1,864 research outputs found

    MUonE sensitivity to new physics explanations of the muon anomalous magnetic moment

    Full text link
    The MUonE experiment aims at a precision measurement of the hadronic vacuum polarization contribution to the muon g2g-2, via elastic muon-electron scattering. Since the current muon g2g-2 anomaly hints at the potential existence of new physics (NP) related to the muon, the question then arises as to whether the measurement of hadronic vacuum polarization in MUonE could be affected by the same NP as well. In this work, we address this question by investigating a variety of NP explanations of the muon g2g-2 anomaly via either vector or scalar mediators with either flavor-universal, non-universal or even flavor-violating couplings to electrons and muons. We derive the corresponding MUonE sensitivity in each case and find that the measurement of hadronic vacuum polarization at the MUonE is not vulnerable to any of these NP scenarios.Comment: 30 pages, 12 figures, minor corrections and changes, more references, version to appear in JHE

    NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile Virus NS2B-NS3 protease

    Get PDF
    BACKGROUND The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the presence of an inhibitor. METHODS In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.The project was funded by the Australian Research Council (http://www.arc.gov.au), grant DP0877540

    Entanglement entropy and multifractality at localization transitions

    Full text link
    The von Neumann entanglement entropy is a useful measure to characterize a quantum phase transition. We investigate the non-analyticity of this entropy at disorder-dominated quantum phase transitions in non-interacting electronic systems. At these critical points, the von Neumann entropy is determined by the single particle wave function intensity which exhibits complex scale invariant fluctuations. We find that the concept of multifractality is naturally suited for studying von Neumann entropy of the critical wave functions. Our numerical simulations of the three dimensional Anderson localization transition and the integer quantum Hall plateau transition show that the entanglement at these transitions is well described using multifractal analysis.Comment: v3, 5 pages, published versio

    Dynamically orienting your own face facilitates the automatic attraction of attention

    Get PDF
    We report two experiments showing that dynamically orienting our own face facilitates the automatic attraction of attention. We had participants complete a cueing task where they had to judge the orientation of a lateralized target cued by a central face that dynamically changed its orientation. Experiment 1 showed a reliable cueing effect from both self- and friend-faces at a long stimulus onset asynchrony (SOA), however, the self-faces exclusively generated a spatial cueing effect at a short SOA. In Experiment 2, event-related potential (ERP) data to the face cues showed larger amplitudes in the N1 component for self-faces relative to friend- and unfamiliar-faces. In contrast, the amplitude of the P3 component was reduced for self compared with friend- and unfamiliar-other cues. The size of the self-bias effect in N1 correlated with the strength of self-biases in P3. The results indicate that dynamic changes in the orientation of one’s own face can provide a strong ecological cue for attention, enhancing sensory responses (N1) and reducing any subsequent uncertainty (P3) in decision-making
    corecore