90 research outputs found

    The Study of Rock Body Damage Constitutive Model in Multiple Fracturing

    Get PDF
    In order to characterize the mechanical behavior of rock body damage evaluation and forming multiple fractures, in this paper in multiple fracturing, we have established rock body damage evaluation constitutive model, and given the point that the rock can bear secondary damage in multiple fracturing. Established the secondary damage evaluation model, and obtained the method for calculating the parameter of the crack in multiple fracturing. We have verified the model by an oil well in Jilin oilfield, the result has fitted well with the actual engineering.Key words: Multiple fracturing; Damage evaluation; Secondary damag

    Fecal microbiota transplantation inhibited neuroinflammation of traumatic brain injury in mice via regulating the gut–brain axis

    Get PDF
    IntroductionRecent studies have highlighted the vital role of gut microbiota in traumatic brain injury (TBI). Fecal microbiota transplantation (FMT) is an effective means of regulating the microbiota–gut–brain axis, while the beneficial effect and potential mechanisms of FMT against TBI remain unclear. Here, we elucidated the anti-neuroinflammatory effect and possible mechanism of FMT against TBI in mice via regulating the microbiota–gut–brain axis.MethodsThe TBI mouse model was established by heavy object falling impact and then treated with FMT. The neurological deficits, neuropathological change, synaptic damage, microglia activation, and neuroinflammatory cytokine production were assessed, and the intestinal pathological change and gut microbiota composition were also evaluated. Moreover, the population of Treg cells in the spleen was measured.ResultsOur results showed that FMT treatment significantly alleviated neurological deficits and neuropathological changes and improved synaptic damage by increasing the levels of the synaptic plasticity-related protein such as postsynaptic density protein 95 (PSD-95) and synapsin I in the TBI mice model. Moreover, FMT could inhibit the activation of microglia and reduce the production of the inflammatory cytokine TNF-α, alleviating the inflammatory response of TBI mice. Meanwhile, FMT treatment could attenuate intestinal histopathologic changes and gut microbiota dysbiosis and increase the Treg cell population in TBI mice.ConclusionThese findings elucidated that FMT treatment effectively suppressed the TBI-induced neuroinflammation via regulating the gut microbiota–gut–brain axis, and its mechanism was involved in the regulation of peripheral immune cells, which implied a novel strategy against TBI

    Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration

    Get PDF
    Even small cartilage defects could finally degenerate to osteoarthritis if left untreated, owing to the poor self-healing ability of articular cartilage. Stem cell transplantation has been well implemented as a common approach in cartilage tissue engineering but has technical complexity and safety concerns. The stem cell homing-based technique emerged as an alternative promising therapy for cartilage repair to overcome traditional limitations. In this study, we constructed a composite hydrogel scaffold by combining an oriented acellular cartilage matrix (ACM) with a bone marrow homing peptide (BMHP)-functionalized self-assembling peptide (SAP). We hypothesized that increased recruitment of endogenous stem cells by the composite scaffold could enhance cartilage regeneration. Methods: To test our hypothesis, in vitro proliferation, attachment and chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) were tested to confirm the bioactivities of the functionalized peptide hydrogel. The composite scaffold was then implanted into full-thickness cartilage defects on rabbit knee joints for cartilage repair, in comparison with microfracture or other sample groups. Stem cell recruitment was monitored by dual labeling with CD29 and CD90 under confocal microcopy at 1 week after implantation, followed by chondrogenic differentiation examined by qRT-PCR. Repaired tissue of the cartilage defects was evaluated by histological and immunohistochemistry staining, microcomputed tomography (micro-CT) and magnetic resonance imaging (MRI) at 3 and 6 months post-surgery. Macroscopic and histological scoring was done to evaluate the optimal in vivo repair outcomes of this composite scaffold. Results: The functionalized SAP hydrogels could stimulate rabbit MSC proliferation, attachment and chondrogenic differentiation during in vitro culture. At 7 days after implantation, increased recruitment of MSCs based on CD29(+)/CD90(+) double-positive cells was found in vivo in the composite hydrogel scaffold, as well as upregulation of cartilage-associated genes (aggrecan, Sox9 and type II collagen). After 3 and 6 months post-surgery, the articular cartilage defect in the composite scaffold-treated group was fully covered with cartilage-like tissue with a smooth surface, which was similar to the surrounding native cartilage, according to the results of histological and immunohistochemistry staining, micro-CT and MRI analysis. Macroscopic and histological scoring confirmed that the quality of cartilage repair was significantly improved with implantation of the composite scaffold at each timepoint, in comparison with microfracture or other sample groups. Conclusion: Our findings demonstrated that the composite scaffold could enhance endogenous stem cell homing and chondrogenic differentiation and significantly improve the therapeutic outcome of chondral defects. The present study provides a promising approach for in vivo cartilage repair without cell transplantation. Optimization of this strategy may offer great potential and benefits for clinical application in the future

    Leaf cuticular wax content is involved in cotton leaf curl virus disease resistance in cotton (Gossypium hirsutum L.)

    Get PDF
    Cotton leaf curl virus disease (CLCuVD) limits cotton production in many cotton growing countries of the world, including Pakistan. In the past, efforts were made to combat this disease by different approaches. Cuticular wax is reported to confer resistance to plants against various biotic and abiotic stresses. Present study was designed to assess the role of cuticular wax content (WC) to resist CLCuVD infestation. The WC of 42 cotton genotypes, originating from various countries (Pakistan, USA, China, etc.), was quantified during two culture periods (2015 & 2016). Cotton germplasm was also scored for % disease index (%DI), seed cotton yield (SCY), number of bolls/plant (NB), and plant height (PHt) for the same culture periods. Significant negative correlation between WC and %DI was found during the two years of experimentation. WC was found positively correlated with SCY and NB. Six cotton genotypes (A-7233, B-557, A-162, BLANCO-3363, CIM-473, and SLH-2010-11) did not show any signs of CLCuVD infestation during both 2015 and 2016. These cotton genotypes contained relatively higher WC. The results from analysis of variance (ANOVA) demonstrated that there were significant differences among genotypes for %DI, WC, SCY, NB, and PHt. These results indicated that WC was involved in resisting CLCuVD and it also had positive effect on plant growth and yield potential. On the basis of these findings, it was concluded that cuticular wax could be used as an indirect criterion for distinguishing and selecting resistant/susceptible cotton genotypes

    A dust concentration measuring device based on infrared difference method

    No full text
    For the problem that traditional optical methods for measuring dust concentration were susceptible to environmental temperature, light source and photoelectric device, a dust concentration measuring method using infrared difference method was proposed, and a dust concentration measuring device was designed which was based on the method. The device calculates dust concentration by a data acquisition and processing module which takes S3C2440 as a core and based on infrared differential measuring principle, and uses wavelet threshold denoising method to process the acquired signals by LabVIEW signal processing module. The debugging result shows that the device is high in signal acquisition precision and measurement accuracy of dust concentration

    Leaf cuticular wax content is involved in cotton leaf curl virus disease resistance in cotton (Gossypium hirsutum L.)

    No full text
    Cotton leaf curl virus disease (CLCuVD) limits cotton production in many cotton growing countries of the world, including Pakistan. In the past, efforts were made to combat this disease by different approaches. Cuticular wax is reported to confer resistance to plants against various biotic and abiotic stresses. Present study was designed to assess the role of cuticular wax content (WC) to resist CLCuVD infestation. The WC of 42 cotton genotypes, originating from various countries (Pakistan, USA, China, etc.), was quantified during two culture periods (2015 & 2016). Cotton germplasm was also scored for % disease index (%DI), seed cotton yield (SCY), number of bolls/plant (NB), and plant height (PHt) for the same culture periods. Significant negative correlation between WC and %DI was found during the two years of experimentation. WC was found positively correlated with SCY and NB. Six cotton genotypes (A-7233, B-557, A-162, BLANCO-3363, CIM-473, and SLH-2010-11) did not show any signs of CLCuVD infestation during both 2015 and 2016. These cotton genotypes contained relatively higher WC. The results from analysis of variance (ANOVA) demonstrated that there were significant differences among genotypes for %DI, WC, SCY, NB, and PHt. These results indicated that WC was involved in resisting CLCuVD and it also had positive effect on plant growth and yield potential. On the basis of these findings, it was concluded that cuticular wax could be used as an indirect criterion for distinguishing and selecting resistant/susceptible cotton genotypes

    Accumulation of Cr in different vegetables and derivation of soil Cr threshold using the species sensitivity distribution method

    No full text
    Due to its high mobility and bioavailability, hexavalent chromium [Cr(VI)] in agricultural soil can be taken up by crops and pose threat to human being. In this study, two soils (Jiangxi red soil and Shandong fluvo-aquic soil) spiked with Cr(VI) and 8 common vegetable varieties were used to conduct the pot experiment. The bioconcentration factor (BCF) values based on the tetraacetic acid extractable Cr (EDTA-Cr) in soils were used to construct the species sensitivity distribution (SSD) curve. Afterwards, the soil Cr threshold was derived based on the critical BCF value and the permissible limit of Cr for vegetables. The results showed that when spiked with 5.6 mg kg−1 of Cr(Ⅵ), the soil EDTA-Cr concentrations were significantly increased compared with the control except Jiangxi red soil planted with carrot and radish, while the Cr concentrations in the edible parts of vegetables in both soils were below the permissible limit (0.5 mg kg−1 FW). However, there are dramatic differences in the accumulation of Cr by different varieties of vegetables. Apparent discrepancy was observed between the two soils for the bioconcentration of Cr by carrot. Among the leafy vegetables, lettuce and oilseed rape are the most and the least sensitive to Cr pollution, respectively. The safety threshold values of EDTA-Cr were 0.70 mg kg−1 for Shandong fluvo-aquic soil and 0.85 mg kg−1 for Jiangxi red soil, respectively. This study provides information on the safety production of vegetable products in Cr(Ⅵ) polluted soils and is helpful to the revision of soil quality standards of Cr

    Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective

    No full text
    The beef cattle industry is pivotal in China’s livestock industry and is important for meeting people’s needs for a better life in the new era. It is strategically important for prospering the frontier, enriching people, and revitalizing the countryside. Because of the national “double carbon” target, there will be an impact on the development of the meat cattle industry, which has a relatively high carbon emission level. The scientific measurement of carbon emission levels in the beef cattle industry, clarifying its main impact factors, are particularly critical. This study measured the carbon emissions from China’s beef cattle industry from 2008 to 2020, using provincial data and the life cycle method, and investigated its influencing factors using a spatial econometric model. The study is of great practical significance for accurately understanding the carbon emissions of the beef cattle industry and for promoting low carbon emission reductions and the transformational development of the beef cattle industry
    corecore