12 research outputs found

    Combined laparoscopy and hysteroscopy vs. uterine curettage in the uterine artery embolization-based management of cesarean scar pregnancy: a retrospective cohort study

    Get PDF
    BACKGROUND: The number of cesarean scar pregnancy (CSP) has significantly increased in the recent decade. Although uterine artery embolization (UAE) has been adopted to minimize the blood loss during uterine curettage removing of CSP, massive bleeding and uterine rupture can still be frequently encountered. The aim of this study was to compare the efficacy and safety of a novel combined laparoscopy and hysteroscopy technique with the traditional curettage in removing the conceptus and repairing the incision defect following the UAE management of CSP. METHODS: The CSP patients (n = 58) diagnosed between March 1, 2005 and March 1, 2010 were enrolled in three medical centers in Shanghai, China. All of these patients have undergone intra-arterial methotrexate, UAE and one of the following treatments: combined laparoscopy and hysteroscopy (study group, n = 25) and uterine curettage (control group, n = 33). Their medical records and 2-year outcomes were reviewed. The CSP removal rate, amount of blood loss during the treatment, incision repair rate (note: the post-curettage healing process of the incision defect was seen as a form of natural incision repairing, i.e., the self-repair mode), hospital stay, β-hCG regression time and postoperative sequelae were compared between two groups. RESULTS: The CSP removal rate in the study group (100%) was significantly higher than that (79%) in the control group (p = 0.024). The average blood loss was 78.0 mL in the study group, which was much less than the 258.5 mL (p = 0.004) in the control group. A satisfactory incision repair rate (96%) was achieved in the study group, while it was 25% (p < 0.001) in the control group. Moreover, the study group had significantly shorter hospital stays (p = 0.043) and β-hCG regression times (p = 0.033), lower rates of postoperative abdominal pain (p = 0.035) and menstruation abnormalities (p = 0.043). CONCLUSIONS: Combined laparoscopy and hysteroscopy is much safer and more effective than uterine curettage as a supplementary measure to remove the conceptus and repair the cesarean incision following the UAE management of CSP

    Thermo-Optical and Particle Number Size Distribution Characteristics of Smoldering Smoke from Biomass Burning

    No full text
    Controlled laboratory combustion experiments were conducted in the fire test room to mimic freshly emitted smoldering smoke of biomass burning in China. The biomass components were determined by ultimate analysis and proximate analysis before experiments. The particle number size distribution (PNSD) between 5 and 1000 nm of smoke was measured by a high sampling frequency size spectrometer. A cavity-enhanced aerosol albedometer with wavelength of 532 nm was used to measure scattering coefficients, extinction coefficients, and single scattering albedo (SSA) of smoldering smoke. The PNSDs of smoldering smoke from the burning of agricultural straw could be fitted with a bimodal lognormal distribution as modes around 10 nm (nucleation mode) and 60 nm (Aitken mode). The PNSDs of wood sawdust could be fitted with a trimodal lognormal distribution, while the two modes were in nucleation mode, and one was in Aitken mode. The bulk optical properties (scattering and extinction coefficients) of smoldering smoke had strong correlations with particle number concentrations of sizes bigger than 100 nm. The correlation between SSA and fixed carbon (FC) was strong (the correlation coefficient is 0.89), while the correlation between SSA and volatile matter (VM) or ash was weak. The relationship between SSA and N (or S) showed a positive correlation, while that of SSA and C showed a negative correlation. The relationship between SSA and VM/FC (or N) showed a strong linear relationship (r2 &gt; 0.8). This paper could improve understanding of the relationship between the optical and particle size distribution properties of smoke from biomass burning and the components of biomass materials under similar combustion conditions

    Effect of biodegradable Zn screw on bone tunnel enlargement after anterior cruciate ligament reconstruction in rabbits

    No full text
    Zn and its alloys have recently emerged as new options for orthopedic implants due to their desirable biodegradation rate and mechanical strength. However, whether Zn metallic implants attenuate bone tunnel enlargement (BTE) after anterior cruciate ligament (ACL) reconstruction and, if so, the underlying mechanism by which this occurs remains elusive. In present study, we explored the possibility of using pure Zn screws to attenuate BTE in rabbits, and the potential molecular mechanism was further explored in primary osteoblasts. Here, our study showed that the pure Zn screws more effectively attenuated BTE after ACL reconstruction in rabbits compared with pure Mg and Ti screws. This was attributed to the fact that the pure Zn screw-released Zn element diminished the size of the femoral tunnels, enhanced the bone mass around the screws, boosted the fixation strength, and promoted the tendon-bone integration. Several lines of cellular evidences suggested that Zn metallic implant-released Zn element induced upregulation of sodium-dependent vitamin C transporter 2 in primary osteoblasts and ultimately elevated the expressions of the osteogenic transcription factors to trigger osteogenic differentiation. This study showed that biodegradable Zn metallic materials were promising candidates for interference screw to attenuate BTE after ACL reconstruction

    Ultrafast Control of Interfacial Exchange Coupling in Ferromagnetic Bilayer

    No full text
    Abstract Fast spin manipulation in magnetic heterostructures, where magnetic interactions between different materials often define the functionality of devices, is a key issue in the development of ultrafast spintronics. Although recently developed optical approaches such as ultrafast spin‐transfer and spin–orbit torques open new pathways to fast spin manipulation, these processes do not fully utilize the unique possibilities offered by interfacial magnetic coupling effects in ferromagnetic multilayer systems. Here, ultrafast optically controlled interfacial exchange interactions in the ferromagnetic Co2FeAl/(Ga,Mn)As system at low laser fluence levels are experimentally demonstrated. The excitation efficiency of Co2FeAl with the (Ga,Mn)As layer is 30–40 times higher than the case with the GaAs layer at 5 K due to the modification of exchange coupling interaction via photoexcited charge transfer between the two ferromagnetic layers. In addition, the coherent spin precessions persist to room temperature, excluding the drive of pump‐modulated magnetization in the (Ga,Mn)As layer and indicating a proximity‐effect‐related optical excitation mechanism. The results highlight the importance of interfacial exchange interactions in ferromagnetic heterostructures and how these magnetic coupling effects can be utilized for ultrafast, low‐power spin manipulation

    Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI)

    No full text
    We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical &lt;em&gt;p&lt;/em&gt;-&lt;em&gt;i&lt;/em&gt;-&lt;em&gt;n&lt;/em&gt; diodes exhibit very low dark current density of 5 mA/cm&lt;sup&gt;2&lt;/sup&gt; at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics

    Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI)

    No full text
    We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical p-i-n diodes exhibit very low dark current density of 5 mA/cm2 at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics
    corecore