43 research outputs found

    Revisiting Single Image Reflection Removal In the Wild

    Full text link
    This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions, examining it from two angles: the collection pipeline of real reflection pairs and the perception of real reflection locations. We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios and incurs reduced costs in collecting large-scale aligned reflection pairs. In the process, we develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW). RRW contains over 14,950 high-resolution real-world reflection pairs, a dataset forty-five times larger than its predecessors. Regarding perception of reflection locations, we identify that numerous virtual reflection objects visible in reflection images are not present in the corresponding ground-truth images. This observation, drawn from the aligned pairs, leads us to conceive the Maximum Reflection Filter (MaxRF). The MaxRF could accurately and explicitly characterize reflection locations from pairs of images. Building upon this, we design a reflection location-aware cascaded framework, specifically tailored for SIRR. Powered by these innovative techniques, our solution achieves superior performance than current leading methods across multiple real-world benchmarks. Codes and datasets will be publicly available

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Rain Streak Removal via Dual Graph Convolutional Network

    No full text
    Deep convolutional neural networks (CNNs) have become dominant in the single image de-raining area. However, most deep CNNs-based de-raining methods are designed by stacking vanilla convolutional layers, which can only be used to model local relations. Therefore, long-range contextual information is rarely considered for this specific task. To address the above problem, we propose a simple yet effective dual graph convolutional network (GCN) for single image rain removal. Specifically, we design two graphs to perform global relational modeling and reasoning. The first GCN is used to explore global spatial relations among pixels in feature maps, while the second GCN models the global relations across the channels. Compared to standard convolutional operations, the proposed two graphs enable the network to extract representations from new dimensions. To achieve the image rain removal, we further embed these two graphs and multi-scale dilated convolution into a symmetrically skip-connected network architecture. Therefore, our dual graph convolutional network is able to well handle complex and spatially long rain streaks by exploring multiple representations, e.g., multi-scale local feature, global spatial coherence and cross-channel correlation. Meanwhile, our model is easy to implement, end-to-end trainable and computationally efficient. Extensive experiments on synthetic and real data demonstrate that our method achieves significant improvements over the recent state-of-the-art methods

    Static rate-optimal scheduling of multirate DSP algorithms via retiming and unfolding.

    No full text
    This paper presents an exact method and a heuristic method for static rate-optimal multiprocessor scheduling of real-time multi rate DSP algorithms represented by synchronous data flow graphs (SDFGs). Through exploring the state-space generated by a self-timed execution (STE) of an SDFG, a static rate-optimal schedule via explicit retiming and implicit unfolding can be found by our exact method. By constraining the number of concurrent firings of actors of an STE, the number of processors used in a schedule can be limited. Using this, we present a heuristic method for processor-constrained rate-optimal scheduling of SDFGs. Both methods do not explicitly convert an SDFG to its equivalent homogenous SDFG. Our experimental results show that the exact method gives a significant improvement compared to the existing methods, our heuristic method further reduces the number of processors used

    Memory-constrained static rate-optimal scheduling of synchronous dataflow graphs via retiming

    No full text
    Synchronous dataflow graphs (SDFGs) are widely used to model digital signal processing (DSP) and streaming media applications. In this paper, we use retiming to optimize SDFGs to achieve a high throughput with low storage requirement. Using a memory constraint as an additional enabling condition, we define a memory constrained self-timed execution of an SDFG. Exploring the state-space generated by the execution, we can check whether a retiming exists that leads to a rate-optimal schedule under the memory constraint. Combining this with a binary search strategy, we present a heuristic method to find a proper retiming and a static scheduling which schedules the retimed SDFG with optimal rate (i.e., maximal throughput) and with as little storage space as possible. Our experiments are carried out on hundreds of synthetic SDFGs and several models of real applications. Differential synthetic graph results and real application results show that, in 79% of the tested models, our method leads to a retimed SDFG whose rate-optimal schedule requires less storage space than the proven minimal storage requirement of the original graph, and in 20% of the cases, the returned storage requirements equal the minimal ones. The average improvement is about 7.3%. The results also show that our method is computationally efficient
    corecore