411 research outputs found

    Recognizing License Plates in Real-Time

    Full text link
    License plate detection and recognition (LPDR) is of growing importance for enabling intelligent transportation and ensuring the security and safety of the cities. However, LPDR faces a big challenge in a practical environment. The license plates can have extremely diverse sizes, fonts and colors, and the plate images are usually of poor quality caused by skewed capturing angles, uneven lighting, occlusion, and blurring. In applications such as surveillance, it often requires fast processing. To enable real-time and accurate license plate recognition, in this work, we propose a set of techniques: 1) a contour reconstruction method along with edge-detection to quickly detect the candidate plates; 2) a simple zero-one-alternation scheme to effectively remove the fake top and bottom borders around plates to facilitate more accurate segmentation of characters on plates; 3) a set of techniques to augment the training data, incorporate SIFT features into the CNN network, and exploit transfer learning to obtain the initial parameters for more effective training; and 4) a two-phase verification procedure to determine the correct plate at low cost, a statistical filtering in the plate detection stage to quickly remove unwanted candidates, and the accurate CR results after the CR process to perform further plate verification without additional processing. We implement a complete LPDR system based on our algorithms. The experimental results demonstrate that our system can accurately recognize license plate in real-time. Additionally, it works robustly under various levels of illumination and noise, and in the presence of car movement. Compared to peer schemes, our system is not only among the most accurate ones but is also the fastest, and can be easily applied to other scenarios.Comment: License Plate Detection and Recognition, Computer Vision, Supervised Learnin

    Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method.

    Get PDF
    Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm(2) at a current density of 3 mA/cm(2) when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm(2), and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work

    Finite Element Analysis and Lightweight Optimization Design on Main Frame Structure of Large Electrostatic Precipitator

    Get PDF
    The geometric modeling and finite element modeling of the whole structure of an electrostatic precipitator and its main components consisting of top beam, column, bottom beam, and bracket were finished. The strength calculation was completed. As a result, the design of the whole structure of the electrostatic precipitator and the main components were reasonable, the structure was in a balance state, its working condition was safe and reliable, its stress variation was even, and the stress distribution was regular. The maximum von Mises stress of the whole structure is 20.14 MPa. The safety factor was large, resulting in a waste of material. An optimization mathematical model is established. Using the ANSYS first-order method, the dimension parameters of the main frame structure of the electrostatic precipitator were optimized. After optimization, more reasonable structural design parameters were obtained. The model weight is 72,344.11 kg, the optimal weight is 49,239.35 kg, and the revised weight is 53,645.68 kg. Compared with the model weight, the optimal weight decreased by 23,104.76 kg and the objective function decreased by 31.94%, while the revised weight decreased by 18,698.43 kg and the objective function decreased by 25.84%

    The algebraic geometry of perfect and sequential equilibrium: an extension

    Get PDF
    We extend the generic equivalence result of Blume and Zame (Econometrica 62: 783-794, 1994) to a broader context of perfectly and sequentially rational strategic behavior (including equilibrium and nonequilibrium behavior) through a unifying solution concept of "mutually acceptable course of action" (MACA) proposed by Greenberg et al. (2009). As a by-product, we show, in the affirmative, Dekel et al.'s (1999) conjecture on the generic equivalence between the sequential and perfect versions of rationalizable self-confirming equilibrium. JEL Classification: C70, C7

    Hierarchical Mutual Information Analysis: Towards Multi-view Clustering in The Wild

    Full text link
    Multi-view clustering (MVC) can explore common semantics from unsupervised views generated by different sources, and thus has been extensively used in applications of practical computer vision. Due to the spatio-temporal asynchronism, multi-view data often suffer from view missing and are unaligned in real-world applications, which makes it difficult to learn consistent representations. To address the above issues, this work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views and ensure the consistency of their latent spaces. More specifically, we first leverage dual prediction to fill in missing views while achieving the instance-level alignment, and then take the contrastive reconstruction to achieve the class-level alignment. To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms. Extensive experiments on public datasets demonstrate that our method significantly outperforms state-of-the-art methods on multi-view clustering even in the cases of view missing and unalignment

    Low Complexity SLP: An Inversion-Free, Parallelizable ADMM Approach

    Get PDF
    We propose a parallel constructive interference (CI)-based symbol-level precoding (SLP) approach for massive connectivity in the downlink of multiuser multiple-input single-output (MU-MISO) systems, with only local channel state information (CSI) used at each processor unit and limited information exchange between processor units. By reformulating the power minimization (PM) SLP problem and exploiting the separability of the corresponding reformulation, the original problem is decomposed into several parallel subproblems via the ADMM framework with closed-form solutions, leading to a substantial reduction in computational complexity. The sufficient condition for guaranteeing the convergence of the proposed approach is derived, based on which an adaptive parameter tuning strategy is proposed to accelerate the convergence rate. To avoid the large-dimension matrix inverse operation, an efficient algorithm is proposed by employing the standard proximal term and by leveraging the singular value decomposition (SVD). Furthermore, a prox-linear proximal term is adopted to fully eliminate the matrix inversion, and a parallel inverse-free SLP (PIF-SLP) algorithm is finally obtained. Numerical results validate our derivations above, and demonstrate that the proposed PIF-SLP algorithm can significantly reduce the computational complexity compared to the state-of-the-arts
    • …
    corecore