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a broader context of perfectly and sequentially rational strategic behavior (including equilibrium

and nonequilibrium behavior) through a unifying solution concept of “mutually acceptable course

of action” (MACA) proposed by Greenberg et al. (2009). As a by-product, we show, in the

affirmative, Dekel et al.’s (1999) conjecture on the generic equivalence between the sequential and

perfect versions of rationalizable self-confirming equilibrium. JEL Classification: C70, C72

Keywords: Extensive forms; generic payoffs; perfect rationality; sequential rationality; MACA;

semi-algebraic sets

∗We are grateful to the Editor, an Associate Editor, and two anonymous referees for valuable comments. We

thank Yi-Chun Chen, Shravan Luckraz, Yongchuan Qiao, Yeneng Sun and Satoru Takahashi for helpful comments

and discussions. An earlier version of the paper was presented at the Asian Meeting of the Econometric Society,

Singapore; and the SAET Conference in Faro, Portugal. Financial support from the National University of Singapore

is gratefully acknowledged. The usual disclaimer applies.
†Corresponding author. E-mail: ecslx@nus.edu.sg (X. Luo), Xuewen.Qian@nottingham.edu.cn (X. Qian), sun-

yang789987@gmail.com (Y. Sun).

1

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/ecth/download.aspx?id=87892&guid=5425387d-2c2d-4cd0-82c5-fbec89a54e9f&scheme=1
https://www.editorialmanager.com/ecth/download.aspx?id=87892&guid=5425387d-2c2d-4cd0-82c5-fbec89a54e9f&scheme=1


1 Introduction

In dealing with the imperfection in extensive-form games (with perfect recall), Selten (1975) introduced

the notion of perfect equilibrium. A perfect equilibrium is a Nash equilibrium that takes the possibility

of off-the-equilibrium play into account by assuming that the players, through the idea of “trembling

hand,” may choose all unintended strategies, albeit with small probabilities. In the spirit of Selten’s

(1975) perfectness, Kreps and Wilson (1982) proposed the notion of sequential equilibrium, by impos-

ing the so-called “sequential consistency” and “sequential rationality” on the behavior of every player.

Sequential equilibrium is more inclusive and weaker than perfect equilibrium: Every perfect equilibrium

must be a sequential equilibrium strategy profile. Kreps and Wilson (1982) pointed out that the two

concepts lead to similar prescriptions for equilibrium play–that is, for each particular game form and

for almost all assignments of payoffs to the terminal nodes, almost all sequential equilibria are perfect

equilibria, and the sets of sequential and perfect equilibria fail to coincide only at payoffs where the

perfect equilibrium correspondence fails to be upper hemi-continuous. Blume and Zame (1994) (here-

after BZ94) strengthened Kreps and Wilson’s (1982) result, and showed that for almost all assignments

of payoffs to the terminal nodes, the sets of sequential and perfect equilibria are identical.

BZ94 obtained the generic equivalence result by exploiting the semi-algebraic structure of the

graphs of the perfect and sequential equilibrium correspondences (because the graphs of these corre-

spondences can each be written as a subset of a Euclidean space defined by a finite number of polynomial

equalities and inequalities).1 As they pointed out,

We believe that, just as differential topology has proved to be the right tool for studying

the fine structure of the Walrasian equilibrium correspondence, so will real algebraic

geometry prove to be the right tool for studying the fine structure of game-theoretic

equilibrium correspondences. (BZ94, p.784)

In this paper, we follow BZ94 to further study the relationship between perfectly and sequentially

rational strategic behavior in a broad sense, including equilibrium and non-equilibrium solution con-

cepts (e.g., rationalizability and self-confirming equilibrium), from the point of view of semi-algebraic

geometry.

By using Greenberg et al.’s (2009) concept of “mutually acceptable courses of action” (MACA),

we obtain a unified generic equivalence in a broader context of perfectly and sequentially rational

strategic behavior (Theorem 1). More specifically, we establish a general generic equivalence between

the sequential and perfect notions of MACA with an elaborate belief structure in an extensive-form

game, namely the “extensive-form convex hull” introduced by Dekel et al. (2002). The notion of

1By the Tarski-Seidenberg Theorem, many equilibrium solution concepts can be defined by a first-order formula and
thus the equilibrium correspondences are semi-algebraic (cf. BZ94, Theorems 1 and 2). A semi-algebraic set has the
following structure: Each semi-algebraic set has only a finite number of open connected components, and has a well-
defined dimension (see, e.g., Hardt (1980) and Bochnak et al. (1987)).
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extensive-form convex hull models the subjective uncertainty of a player over the behavioral strategies

of an opponent especially in the non-equilibrium paradigm, and it essentially restricts the scope of the

limit points of trembling sequences in the analysis of perfectly and sequentially rational behavior in

extensive-form games.2 We apply our generic equivalence to various game-theoretic solution concepts

such as equilibrium, self-confirming equilibrium, and rationalizability, and obtain a variety of generic

equivalence results as corollaries of our approach (Corollaries 1-3). In particular, Corollary 2(iii) shows,

in the affirmative, Dekel et al.’s (1999) conjecture that the sequentially and perfectly rationalizable

self-confirming equilibria are generically equivalent.3

From a technical perspective, BZ94’s approach relies heavily on the semi-algebraic property of sets

of perfect/sequential equilibria, which are defined by polynomial equalities and inequalities in finite

dimensional Euclidean spaces. More specifically, BZ94 obtained generic equivalence between perfect

and sequential equilibria, based on the fact that the graphs of the perfect and sequential equilibrium

correspondences can be characterized respectively by the closure and vertical closure of the (semi-

algebraic) graph of the perturbed Nash equilibrium correspondence. However, it is less clear that other

kinds of game-theoretic solution concepts –such as perfect and sequential versions of self-confirming

rationalizable equilibrium and rationalizability defined in Dekel et al. (1999, 2002) and Greenberg et

al. (2009)– have the semi-algebraic property, because the definitions involve a complex structure of

beliefs in terms of the extensive-form convex hull. Rather than working directly on the semi-algebraic

property of specific solution concepts, we here take an alternative approach based on the semi-algebraic

property of the primitive set of “perfectly-rational states.” A state of a player consists of three elements:

the player’s payoff function, his belief over opponents’ choice and his strategy. A perfectly-rational

state is a state with the restriction that the player’s choice of strategy is optimal with respect to

his payoff function and “cautious” belief (in terms of a full-support behavior strategy profile). Our

general generic equivalence result follows from, in the spirit of Kreps and Wilson (1982, Proposition

6), a characterization of sequential/perfect rationality by the closure and vertical closure of the set of

perfectly-rational states, with the additional restrictions that the limit point of a sequence of trembles

is confined to the extensive-form convex hull.

Our approach is feasible and applicable to a variety of situations, as long as the sequence of

trembles in the analysis of perfectly and sequentially rational behavior is concordant with the diverse

belief structure adopted in an extensive-form game. For instance, if the belief structure is restricted

to a “common” sequence of trembles for all players, we obtain BZ94’s generic equivalence result for

perfect and sequential equilibria (Corollary 1); if the belief structure allows different players to have

2The notion of extensive-form convex hull is designed to overcome the notorious problem of imperfection under subjec-
tive uncertainty over (behavioral) strategies in extensive-form games. Two important features of making use of the notion
of the extensive-form convex hull are (i) it eliminates weakly dominated strategies in simultaneous-move games, and (ii)
it yields the backward-induction strategy profile in a “generic” perfect-information game.

3Dekel et al. (1999, Footnote 4) made a claim without proof: “There are two closely related notions of optimality at off-
path information sets that we consider: best replies to the limit of a sequence of trembles, namely sequential rationality,
as in Kreps and Wilson (1982), and best replies to the sequence itself, as in Selten’s notion (1975) of trembling-hand
perfection. We expect that, as in the relationship between sequential and perfect equilibrium, the difference is only in
non-generic games see Kreps and Wilson (1982) and Blume and Zame (1994) but verifying this takes us too far afield.”
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distinct sequences of trembles,4 we obtain a generic equivalence result for “weakly” perfect and “weakly”

sequential equilibria (Corollary 2(i)).

The research line of “genericity” in game theory sheds light on important and fundamental issues

on rational strategic behavior;5 e.g., Kreps and Wilson (1982) and Kohlberg and Mertens (1986) applied

Sard’s Theorem and the Regular Value Theorem in differential topology to study equilibrium distribu-

tions over terminal nodes and the generic finiteness of equilibria components (see also Blume and Zame

(1993), Ritzberger (1994), McKelvey and McLennan (1996), Kohlberg and Reny (1997), Perea et al.

(1997), Govindan and Wilson (2001, 2006, 2012), Govindan and McLennan (2001), Hillas and Kohlberg

(2002), Haller and Lagunoff (2002), Demichelis and Ritzberger (2003), Voorneveld (2005), Kubler and

Schmedders (2010), Pimienta and Litan (2008), and Pimienta and Shen (2014) for more discussions).

The rest of the paper is organized as follows. In Section 2, we provide an illustrative example to

explain the general generic equivalence between perfectly and sequentially rational strategic behavior.

In Section 3, we introduce the set-up, notation, and definitions. In Section 4, we present the central

result on the general generic equivalence, and apply our approach to various game-theoretic solution

concepts. Section 5 concludes. To facilitate reading, we relegate all the proofs to Appendix B and

relevant definitions to Appendix A.

2 An Illustrative Example

In a “generic” game with perfect information (i.e., the game is not a “nongeneric” case where, for

some player, the same payoff is assigned to two distinct terminal nodes), it is fairly easy to see that

perfect/sequential equilibrium yields the unique backward-induction strategy profile. In other words,

sequential and perfect equilibria are generically identical in games with perfect information.6 A sim-

ilar result indeed holds true for the notion of perfect/sequential rationalizability. Thus, in the class

of “generic” games with perfect information (excluding a lower-dimensional set of payoffs), both per-

fect/sequential equilibrium and rationalizability lead to the unique backward-induction strategy profile.

The following two-person extensive-form game demonstrates a “generic” equivalence relationship

between perfectly and sequentially rational strategic behavior in a broad sense.

Apparently, L dominates R (for player 1); l dominates r (for player 2) if payoffs u ≤ 1. It is easy to

see that sequential equilibrium differs from perfect equilibrium only at the “nongeneric” payoff u0 = 1:

4That is, different players are not required to hold the same beliefs on how players “tremble”. Fudenberg and Tirole
(1991, p.341) pointed out, “Why should all players have the same theory to explain deviations that, after all, are either
probability-0 events or very unlikely, depending on one’s methodological point of view? The standard defense is that this
requirement is in the spirit of equilibrium analysis, since equilibrium supposes that all players have common beliefs about
the others’ strategies. Although this restriction is usually imposed, we are not sure that we find it convincing.”

5See also Aumann (1985) and van Damme (1998) for Robert Aumann’s insightful and thoughtful discussions on the
importance of “relationships” in scientific research.

6More precisely, a statement is “generically” true if it is false only for a lower dimensional subset of the payoff vector
space. Besides full dimension we used here, there are other notions of “genericity” such as open and dense, residual,
meagre complement, almost surely, and almost everywhere.
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Figure 1: A two-person game Γ(u) where u ∈ R

(S, r) is a sequential equilibrium but not a perfect equilibrium when u0 = 1. Moreover, the difference

between perfect and sequential equilibria occurs only for “nongeneric” payoff(s) in a lower-dimensional

payoffs space. BZ94 showed that for “almost all” or “generic” assignments of payoffs to the terminal

nodes, the sets of sequential and perfect equilibria are identical.7

This generic equivalence result does not appear to hinge on the fact that the solution concept is

equilibrium-based. This kind of generic equivalence relationship indeed holds true for perfectly and

sequentially rational strategic behavior in a broad sense–that is, “sequential rationality” differs from

“perfect rationality” only at the “nongeneric” payoff u0 = 1. For simplicity, we restrict attention to

player 2’s strategic behavior in Figure 1. Obviously, strategy r is not perfectly rational for player 2 since

l (weakly) dominates r at u0 = 1. But, r is sequentially rational when u0 = 1 if player 2 holds a belief

assessment that assigns a probability of 1 on the right-side node at his information set; the assessment

can be generated by a “trembling sequence” xε ≡ ε2L+ εR+
(
1− ε− ε2

)
S as ε→ 0. However, r can

be perfectly rational by allowing for payoff perturbations. That is, although r is not optimal along the

trembling sequence xε, r can be optimal along the trembling sequence xε under a slightly perturbed

payoff uε = 1+ 2ε. Subsequently, that strategy r is sequentially rational can be obtained from a limit

point of “perfectly-rational states” (uε, xε, r), i.e., limε→0 (uε, xε, r) = (1, 1 ◦ S, r).

In general, every sequentially rational strategy can be characterized by a limit point of perfectly-

rational states (cf. Kreps and Wilson (1982, Proposition 6)), while every perfectly rational strategy is

naturally associated with a limit point of perfectly-rational states, without payoff perturbations. That

is, the set of sequentially (resp. perfectly) rational strategies can be characterized by the closure (resp.

vertical closure) of the set of perfectly-rational states. By Generic Local Triviality in semi-algebraic

geometry, the closure and vertical closure of the set of perfectly rational states are almost the same. It

7This example shows that there is no “generic” equivalence between Myerson’s (1978) proper equilibrium and perfect
equilibrium: For “generic” payoffs u > 1, (S, r) is a perfect equilibrium but not a proper equilibrium. van Damme (1992,
Theorem 2.6.1) presented an “almost all” theorem: In “almost all” normal form games, Nash equilibria are “regular”
equilibria (hence proper equilibria). Nevertheless, as van Damme (1992, p.45) pointed out, the analysis “is of limited value
for the study of extensive form games as any nontrivial such game gives rise to a nongeneric normal form.”
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therefore follows that sequential rationality differs from perfect rationality only at “nongeneric” payoffs.

By using Greenberg et al.’s (2009) notion of MACA, we can establish a unified generic equivalence result

between perfectly and sequentially rational strategic behavior in a wide range of environments (Theorem

1).

3 Preliminaries

3.1 Set-up

We consider a (finite) extensive form with perfect recall:8

Γ = (N,V,H, {Ah}h∈H),

where N is the finite set of players, V is the finite set of nodes, H is the finite set of information sets,

Ah is the finite set of actions available at information set h. Let Z ⊆ V denote the finite set of terminal

nodes. A payoff function for player i is a function ui : Z 7→ R. Let U = Πi∈NUi where Ui = R|Z| is the

space of player i’s payoff functions. The game Γ(u) is specified by the extensive form Γ and the payoffs

u ∈ U .

A mixed action at information set h is a probability distribution over the actions in Ah. Let Yh
denote the set of mixed actions at h; that is, Yh = ∆ (Ah). The set of player i’s (behavioral) strategies

is Yi = Πh∈Hi
Yh (where Hi is the set of player i’s information sets); that is, a strategy yi ∈ Yi of player

i specifies for each information set h ∈ Hi a probability distribution yh over the action set Ah. Let

Y = Πi∈NYi and Y−i = Πj 6=i Yj . For a profile y ∈ Y, we also write y = (yi, y−i) = (yh, y−h).

The sets Y, Yi, Y−i and Y−h can be viewed as semi-algebraic sets, which are defined by linear

equalities and inequalities, in finite dimensional Euclidean spaces.9 Fix a terminal node z, the proba-

bility Pr(z|y) that z is realized by y (from the initial node) is a polynomial function of y ∈ Y. In game

Γ(u), i’s expected payoff function vi(·, ·) is defined as follows: For all y ∈ Y and ui ∈ Ui,

vi(y, ui) = Σz∈Zui(z) Pr (z|y) ,

which is semi-algebraic on Y × Ui. Let int(Y) denote the semi-algebraic set of strictly-positive-

behavioral-strategy profiles in Y –each of which assigns strictly positive probability to every action

at every information set.

8Since the formal description of an extensive form is by now standard (see, for instance, Kreps and Wilson (1982) and
Osborne and Rubinstein (1994)), we here include the necessary notation only. We note our approach can be extended to
games with nature moves.

9A set X ⊆ Rn is semi-algebraic if it is the finite union of sets of the form {x ∈ Rn : f1(x) = 0, · · · , fk(x) = 0 and
g1(x) > 0, · · · , gm(x) > 0}, where the fi and gj are polynomials with real coefficients. A correspondence is semi-algebraic
if and only if its graph is a semi-algebraic set.
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3.2 Perfect rationality and sequential rationality

Let yti  yi denote a trembling sequence
{
yti
}∞
t=0

of strictly positive behavioral strategies in Yi that

converges to yi in Yi as t goes to infinity. Let yt  y denote yti  yi ∀i ∈ N . (Throughout this paper,

we consider the pointwise convergence in a Euclidean space.) A consistent assessment is a profile-and-

distributions pair (y, µ), where y is a profile of behavioral strategies and µ is a function that assigns

to every information set a probability distribution on the nodes in the information set, such that there

exists yt  y and µt → µ (as t goes to infinity) where the distribution function µt is derived from yt

using Bayes’ rule.

We define each player’s perfect and sequential rationality when faced with strategic uncertainty in

a game situation as follows.

Definition 1. Consider an extensive form Γ with perfect recall. Let ui ∈ Ui and Y−i ⊆ Y−i.

(i) [Perfect Rationality under Uncertainty] Player i’s strategy yi ∈ Yi is a perfect best

response with respect to (Y−i, ui) if there exists yt  (yi, y−i) with y−i ∈ Y−i such that for all

t ≥ 0, yh ∈ arg maxy′h∈Yh
vi
((
y′h, y

t
−h
)
, ui
)

for all h ∈ Hi.

(ii) [Sequential Rationality under Uncertainty] Player i’s strategy yi ∈ Yi is a sequential best

response with respect to (Y−i, ui) if there exists a consistent assessment (y, µ) with y−i ∈ Y−i
such that for all h ∈ Hi, yi ∈ arg maxy′i∈Yi

vi (y′i, (y, µ) , ui|h).10

That is, a strategy yi of player i is perfectly rational with respect to (Y−i, ui) if there exists a

trembling sequence
{
yt
}∞
t=0

in int(Y) such that the limit-point profile y−i = limt→∞ y
t
−i resides in the

uncertain domain Y−i, and the limit-point strategy yi = limt→∞ y
t
i is a “local” best response under the

payoff function ui along the trembling sequence
{
yt
}∞
t=0

. Similarly, a strategy yi is sequentially rational

with respect to (Y−i, ui) if there exists a consistent assessment (y, µ) with the constraint y−i ∈ Y−i such

that the strategy yi is a sequential best response under the payoff function ui and consistent assessment

(y, µ). In the certainty case Y−i = {y−i} in the equilibrium paradigm, Definition 1(i) gives rise to

perfect rationality in the sense of Selten (1975) and Definition 1(ii) gives rise to sequential rationality

(with sequential consistency) in the sense of Kreps and Wilson (1982).

3.3 MACA: a unifying solution concept

Consider an extensive form Γ. Following Dekel et al. (2002), we use the notion of “extensive-form convex

hull” to model the subjective uncertainty of a player on the behavioral strategies of an opponent. A

behavioral strategy yi of player i is in the extensive-form convex hull of Yi ⊆ Yi, denoted by coe(Yi), if

10Player i’s expected payoff conditional on h is defined as vi(y
′
i, (y, µ) , ui|h) = Σz∈Zui(z) Pr{z| (y′i, y−i) , µ, h}, where

Pr{z| (y′i, y−i) , µ, h} is the probability that z is reached conditionally on h under (y′i, y−i) and µ.
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there is a finite set
{
y1
i , ..., y

M
i

}
⊆ Yi, with trembling sequences

(
ym,ti

)M
m=1

 (ymi )Mm=1 and a sequence(
αm,t

)M
m=1

→ α of distributions on {1, ...,M}, such that yti generated by the convex combination

ΣM
m=1α

m,tym,ti (in terms of realization outcomes) converges to yi. A behavioral strategy profile in

Πj 6=ico
e(Yj) can be interpreted as an elaborate belief of player i about the opponents’ behavior in face

of an uncertain domain Πj 6=iYj in the extensive form Γ (see Dekel et al. (2002) and Greenberg et al.

(2009) for more discussions).

In the context of extensive-form games, Greenberg et al. (2009) offered a unifying solution con-

cept of “mutually acceptable course of action” (MACA) for situations where rational individuals with

different beliefs agree to a shared course of action. For the purpose of this paper, we introduce perfect

and sequential versions of MACA as follows.

Definition 2 (Greenberg et al. (2009)). In the extensive-form game Γ(u) with perfect recall, a

course of action σ = (σh)h∈H , where σh ∈ Yh∪{∅}, is a perfect-MACA/sequential-MACA if there exists

a set Y = Πi∈NYi ⊆ Y that perfectly/sequentially supports σ, i.e.,

(i) [agreeing on σ] if σh 6= ∅, then yh = σh for all y ∈ Y ;

(ii) [perfect/sequential rationality] for each i ∈ N , every yi ∈ Yi is a perfect/sequential best

response with respect to (Πj 6=ico
e(Yj), ui).

Let >sequential
σ (u) ≡ ∪Y sequentially supports σ in Γ(u)Y denote the union of sequentially σ-supporting sets in

Γ(u). Let >perfect
σ (u) ≡ ∪Y perfectly supports σ in Γ(u)Y denote the union of perfectly σ-supporting sets in

Γ(u).

Unlike a behavioral strategy profile, a course of action σ does not need to determine a contingent

specification of mixed actions at every information set –i.e., it allows to define σh = ∅ for some infor-

mation set h. Greenberg et al. (2009) demonstrated that, by varying the degree of completeness of

the underlying course of action (i.e., the extent of non-null specifications σh 6= ∅), the notion of MACA

can be related to commonly used game-theoretic solution concepts, such as equilibrium, self-confirming

equilibrium, and rationalizability. More specifically,

• A course of action σ is a “complete” perfect-MACA which specifies actions at all information

set, i.e. σh 6= ∅ ∀h ∈ H, if and only if σ is a “weakly” perfect equilibrium (in which different

players can adopt different sequences of trembles); similarly, σ is a “complete” sequential-MACA

if and only if σ is a “weakly” sequential equilibrium.

• If a course of action σ is a “null” perfect-MACA that does not pin down an action at any

of the information set, i.e. σh = ∅ ∀h ∈ H, then the null perfect-MACA σ yields a perfect

version of rationalizablility, which is related to Herings and Vannetelbosch’s (1999) definition
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of “weakly perfect rationalizability” in simultaneous-move games; similarly, the null sequential-

MACA yields the notion of sequential rationalizability in Dekel et al. (1999, 2002).

• A course of action σ is a “path” sequential-MACA, which satisfies σh 6= ∅ whenever h is reached

with positive probability under σ, if and only if σ is a path resulting from sequentially rational-

izable self-confirming equilibrium in Dekel et al. (1999, 2002); a “path” perfect-MACA σ gives

rise to a perfect version of rationalizable self-confirming equilibrium.

4 Generic equivalence

Let Σsequential(u) and Σperfect(u) denote the sets of sequential-MACAs and perfect-MACAs in Γ(u),

respectively. Define the sequential-MACA-cluster correspondence Υsequential : U ⇒ ΠH∈2H\{∅} [Πh∈HYh]

and perfect-MACA-cluster correspondence Υperfect : U ⇒ ΠH∈2H\{∅} [Πh∈HYh] (where 2H is the power

set of H) as follows: For all u ∈ U ,

Υsequential (u) ≡
∏

H∈2H\{∅}

{
(yh)h∈H ∈ Πh∈HYh : ∃σ ∈ Σsequential(u) s.t. σh =

{
yh, if h ∈ H
∅, otherwise

}
;

Υperfect (u) ≡
∏

H∈2H\{∅}

{
(yh)h∈H ∈ Πh∈HYh : ∃σ ∈ Σperfect(u) s.t. σh =

{
yh, if h ∈ H
∅, otherwise

}
.

This notation Υsequential (u) is naturally related to the Cartesian product of clusters of (nonnull)

sequential-MACAs in Γ(u), where a cluster is a bunch of the sequential MACAs that can each de-

termine a contingent specification of mixed actions only for a particular collection of information sets

in Γ; the notation Υperfect (u) is related to a Cartesian product of clusters of (nonnull) perfect-MACAs

in Γ(u) in the same manner. For instance, the set of all the complete sequential-MACAs in Γ(u) is

simply a cluster of sequential equilibria in Γ(u). We are now in a position to present the central result

of this paper.

Theorem 1. Consider an extensive form Γ with perfect recall. There is a closed, lower-dimensional

semi-algebraic subset U0 ⊂ U such that for all u ∈ U\U0, in game Γ(u), (i) the set of sequential-

MACAs coincides with the set of perfect-MACAs (i.e., Σsequential(u) = Σperfect(u)) and (ii) for an

arbitrary given course of action σ in Γ, the union of sequentially σ-supporting sets coincides with the

union of perfectly σ-supporting sets (i.e., >sequential
σ (u) = >perfect

σ (u)).

Moreover, Υsequential(u) = Υperfect(u) for all the payoffs u ∈ U at which the sequential-MACA-

cluster correspondence Υsequential(·) is lower hemi-continuous and the perfect-MACA-cluster correspon-

dence Υperfect(·) is upper hemi-continuous. In addition, for an arbitrary given course of action σ in

Γ, >sequential
σ (u) = >perfect

σ (u) for all the payoffs u ∈ U at which >sequential
σ (·) is lower hemi-continuous

and >perfect
σ (·) is upper hemi-continuous.
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The main idea of our proof of Theorem 1 goes as follows. We work with the primitive set Ri of

an individual player i’s perfectly-rational states:

Ri ≡

{
(ui, x, yi) ∈ Ui × int (Y)× Yi : yh ∈ arg max

y′h∈Yh

vi
((
y′h, x−h

)
, ui
)
∀h ∈ Hi

}
.

Each element (ui, x, yi) ∈ Ri can be interpreted as a “perfectly-rational state” in which player i’s choice

of strategy yi is optimal with respect to payoff function ui ∈ Ui and (cautious) belief x ∈ int (Y). In

the spirit of Kreps and Wilson (1982), we provide a useful characterization of perfect rationality and

sequential rationality respectively by the closure and vertical closure of Ri. More specifically, player i’s

strategy yi is a sequential (resp. perfect) best response with respect to (Y−i, ui) if, and only if, yi can be

embedded in the closure (resp. vertical closure) of Ri with the restriction that the limit-point belief is

consistent with the opponents’ choices in coe(Y−i) and his own choice yi (Lemma 1 in Appendix B).11 By

the Tarski-Seidenberg Theorem, Ri is a semi-algebraic set. We then adopt the methods in BZ94 to show

that the closure and vertical closure of Ri are generically equivalent (Lemma 2 in Appendix B), and

establish an elementary generic equivalence between perfect rationality and sequential rationality for

an individual player in an extensive form (Lemma 3 in Appendix B). By using the analytical framework

of MACA, we can obtain a very general generic equivalence between perfectly and sequentially rational

behavior, under the elaborate belief structure that each player holds an “independent” limit-point belief

about each opponent player’s behavior residing in the extensive-form convex hull of an uncertain domain

of behavioral strategies.

In contrast to the BZ94 approach that relies crucially on the semi-algebraic property of the equi-

librium solution concepts, our approach does not depend directly on the semi-algebraic property of ad

hoc solution concepts. Our analysis is solely based on the semi-algebraic property of the elementary

set Ri; thus it is feasible and applicable to a variety of game-theoretic solution concepts, as long as

the trembling sequence in the analysis of perfectly and sequentially rational behavior is confirmed to

be concordant with the belief structure adopted in an extensive-form game. If we work with a belief

structure in which every player holds a consistently aligned cautious belief about the players’ behavior

in the equilibrium paradigm, our approach delivers the BZ94 generic equivalence result for the notions

of sequential and perfect equilibria (see Appendix A for their definitions).

Corollary 1 (BZ94, Theorem 4). Consider an extensive form Γ with perfect recall. There is a closed,

lower-dimensional semi-algebraic subset U0 ⊂ U such that for all u ∈ U\U0, any sequential equilibrium

strategy profile is a perfect equilibrium in game Γ(u). Moreover, the sets of perfect and sequential

equilibrium strategy profiles coincide for all the payoffs u ∈ U at which the sequential equilibrium

correspondence is lower hemi-continuous and the perfect equilibrium correspondence is upper hemi-

continuous.

11To relate to Selten’s (1975) perfectness, Kreps and Wilson (1982, Proposition 6) provided a useful characterization of
sequential equilibrium in terms of “payoff perturbations”; they relaxed Selten’s criterion by allowing some (vanishingly)
small uncertainty on the part of players’ payoffs (cf. also Halpern (2009)).

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



By varying the degree of completeness of the underlying course of action, we obtain an immediate

corollary of Theorem 1 as follows (cf. Appendix A for definitions).

Corollary 2. Consider an extensive form Γ with perfect recall. There is a closed, lower-dimensional

semi-algebraic subset U0 ⊂ U such that for all u ∈ U\U0, in game Γ(u),

(i) the set of weakly sequential equilibria coincides with the set of weakly perfect equilibria;

(ii) the set of sequentially rationalizable strategy profiles (Dekel et al. (1999, 2002)) coincides with

the set of perfectly rationalizable strategy profiles (Greenberg et al. (2009));

(iii) the set of paths resulting from sequentially rationalizable self-confirming equilibria (Dekel et al.

(1999, 2002)) coincides with the set of path perfect-MACAs (Greenberg et al. (2009)).

Moreover, for all u ∈ U\U0, the largest (w.r.t. set inclusion) sequentially σ-supporting set in Γ(u)

coincides with the largest perfectly σ-supporting set in Γ(u).

Remark. Fudenberg and Levine (1993) introduced the notion of self-confirming equilibrium that is

a generalization of Nash equilibrium for extensive-form games, in which players correctly predict the

actions their opponents take along the equilibrium path, but may have misconceptions about what

their opponents would do at information sets that are never reached when the equilibrium is played

(see also Fudenberg and Levine (2006; 2009), Esponda (2013), Battigalli et al. (2015), and Fudenberg

and Kamada (2015)).12 Dekel et al. (1999, 2002) developed a refinement of sequentially rationalizable

self-confirming equilibrium (SRSCE), which is related to assuming sequential rationality and almost

common certainty of payoffs in an epistemic model with independent beliefs (cf. Asheim and Perea

(2005) and Luo and Wang (2017)). Dekel et al. (1999, Footnote 4) claimed the “generic” equivalence

between SRSCE and the path perfect-MACA in Greenberg et al. (2009), but they offered no formal

analysis of the claim. Corollary 2(iii) shows this claim is true.

We end this section by providing an application of our approach in extensive forms with simul-

taneous moves. Corollary 3 below asserts that, in normal form games, iterated elimination of weakly

dominated strategies (IEWDS) is generically an order-independent procedure which is equivalent to

iterated elimination of strictly dominated strategies (IESDS).13

12The notion is also related to Rubinstein and Wolinsky’s (1994) notion of a “rationalizable conjectural equilibrium”
(RCE).

13It is worth noting that in the generic set U\U0 (Corollary 3), there are games with strictly/weakly dominated strategies,
so that the statement of Corollary 3 is not vacuously true. The major reason is that if a strategy is strictly dominated
at a payoff vector u ∈ U , then this is also true in a neighborhood of u; hence, strictly dominated strategies exist in a
full-dimensional payoff subset (excluding the lower-dimensional set U0). We thank an anonymous referee for drawing our
attention to this point.
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Corollary 3. Consider a (finite) normal form Γ. There exists a closed, lower-dimensional semi-

algebraic subset U0 ⊂ U such that for all u ∈ U\U0, every IEWDS procedure is an IESDS procedure;

hence, IEWDS is generically an order-independent procedure.

5 Concluding remarks

BZ94 strengthened Kreps and Wilson’s (1982) result and showed that, for almost all assignments of

payoffs to the terminal nodes, the sets of sequential and perfect equilibria are identical. In this paper, we

have extended BZ94’s result to more general settings of strategic interactions. We have formulated and

proved a general and fundamental generic equivalence between sequential and perfect rational behavior

in extensive-form games. By using Greenberg et al.’s (2009) concept of MACA, we have established a

unified generic equivalence between the notions of sequential MACA and perfect MACA (Theorem 1).

We have demonstrated that we can obtain a variety of generic equivalence results for various kinds of

solution concepts such as equilibrium, rationalizability, and self-confirming equilibrium, as corollaries

of our general generic equivalence theorem. The study of this paper helps deepen our understanding

of the fine structural relationship between perfectly and sequentially rational strategic behavior under

different behavioral assumptions.

In this paper, we have followed Dekel et al. (1999, 2002) and Greenberg et al. (2009) to adopt a

simple and convenient way of defining perfect/sequential rationality by using sequences of trembles and

present a unified framework for the study of the generic relationship between perfectly and sequentially

rational strategic behavior in a broad sense. Alternatively, one may follow BZ94’s approach to analyze

perfectly and sequentially rational strategic behavior by using “perturbed games.” However, there

is no formal formulation of perfect/sequential rationalizability for extensive-form games, in terms of

perturbed games, in the literature, although Bernheim (1984, pp.1021-1022) outlined such a notion of

perfect rationalizability in normal form games. Herings and Vannetelbosch (1999, Example G7) showed

that, unlike the notion of perfect equilibrium, there are different definitions of perfect rationalizability

by using “trembling conjectures” or “perturbed games” (cf. also Börgers (1994)). In particular, the

alternative definition of perfect/sequential rationalizability by using “perturbed games” may suffer

Fudenberg and Tirole’s (1991) criticism: It implicitly requires that all players have the same theory to

form common “trembling conjectures,” as illustrated by the following example.

It is easy to see that the strategy profile y = (E1, C2, R3), marked by bold lines in Figure 2, is sequen-

tially/perfectly rationalizable. But, the profile y is not sequentially/perfectly rationalizable in terms of

“perturbed games”. To see this, note that (i) in any perturbed game, because E1 strictly dominates

L1 and R1, there is a unique rationalizable strategy for player 1 – i.e., playing L1 and R1 with the

minimum probabilities specified in the perturbed game, and (ii) player 2 and 3 must hold common

“trembling conjectures” in commonly known “perturbed games”. But, C2 is sequentially rational only

if p ≤ 1/3; R3 is sequentially rational only if q ≥ 2/3. Subsequently, the profile (C2, R3) cannot be

sequentially/perfectly rationalizable in terms of “perturbed games”. This argument is valid for a neigh-
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Figure 2: A three-person game

borhood of the payoffs to the terminal nodes.14 Since this kind of implicit requirement of common

“trembling conjectures” appears to be less convincing and arguable especially in a non-equilibrium set-

ting, we do not use this alternative way of formulating perfectly/sequentially rational strategic behavior

in the perturbed games in this paper.

As we have emphasized, unlike BZ94’s approach, our analysis in this paper does not rely directly on

semi-algebraic properties of specific solutions concepts (e.g., the semi-algebraic structure of perfect and

sequential equilibrium correspondences in BZ94). Instead, our approach is based simply on the primitive

set Ri of “perfectly-rational” states, so that it is feasible and applicable to various solution concepts

under different behavioral assumptions. We believe that our approach to the generic equivalence relation

provides a useful and complementary way for the study of the relationship between perfectly and

sequentially rational strategic behavior in a wide range of environments.

Through the lens of Greenberg et al.’s (2009) concept of MACA, Theorem 1 gives rise to a generic

equivalence between Dekel et al.’s (1999, 2002) sequential rationalizability and Greenberg et al.’s

(2009) perfect rationalizability with an elaborate belief structure, namely the extensive-form convex

hull (Corollary 2 (ii)). We would like to point out that our analysis is valid for a special kind of point-

belief structure in which each player holds a degenerate point-mass belief about the opponent players’

uncertain behavior (cf. Bernheim (1984) for the notion of point-rationalizability); that is, the sequential

and perfect versions of point-rationalizability are generically equivalent. There are other definitions of

rationalizability in the literature, e.g., Pearce’s (1984) extensive form rationalizability (EFR). Battigalli

(1997), Perea (2018), Brandenburger and Friedenberg (2003), and Shimoji (2004) studied related issues

on the equivalence of weak dominance and sequential best response; they showed that EFR and IEWDS

are “outcome” equivalent in generic complete-information games. The extension of our paper to the

solution concept of EFR is certainly an important and interesting subject for further research, but

beyond the scope of this paper. In this paper, we restrict our attention to player i’s independent beliefs

in Πj 6=ico
e(Yj) about the opponents’ behavioral strategies. How to extend this paper to the situations

14This example shows that the notions of perfect Bayesian equilibrium and sequential equilibrium are generically distinct,
because (E1, C2, R3) is a perfect Bayesian equilibrium but not a sequential equilibrium.
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by allowing correlated beliefs about the opponents’ behavioral strategies is also an intriguing subject

for future research.
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6 Appendix A: Definitions

Consider an extensive-form game Γ (u) with perfect recall.

Definition A1. (i) [Selten (1975); Osborne and Rubinstein (1994, Definition 251.1)] A

strategy profile y ∈ Y is a perfectly equilibrium if there exists a trembling sequence yt  y such that,

for all t ≥ 0, yh ∈ arg maxy′h∈Yh
vi
((
y′h, y

t
−h
)
, ui
)

for all i ∈ N and h ∈ Hi.

(ii) [Kreps and Wilson (1982)] A strategy profile y ∈ Y is a sequential equilibrium if there exists

a consistent assessment (y, µ) such that yi ∈ arg maxy′i∈Yi
vi (y′i, (y, µ) , ui|h) for all i ∈ N and h ∈ Hi.

(iii) A strategy profile y ∈ Y is a “weakly” perfect equilibrium if for each player i ∈ N , there exists

a trembling sequence yt  y such that, for all t ≥ 0, yh ∈ arg maxy′h∈Yh
vi
((
y′h, y

t
−h
)
, ui
)

for all h ∈ Hi.

(iv) A strategy profile y ∈ Y is a “weakly” sequential equilibrium if for each player i ∈ N , there

exists a consistent assessment (y, µ) such that yi ∈ arg maxy′i∈Yi
vi (y′i, (y, µ) , ui|h) for all information

set h ∈ Hi.

In the notions of perfect equilibrium and sequential equilibrium, all the players are required to

have a (common) trembling sequence. In contrast, in the notions of “weakly” perfect equilibrium and

“weakly” sequential equilibrium, different players are allowed to adopt distinct trembling sequences.15

Definition A2 (Greenberg et al. (2009) and Dekel et al. (1999, 2002)). A product set

Y = Πi∈NYi ⊆ Y is a perfectly (or sequentially) rationalizable set if for each player i ∈ N , every yi ∈ Yi
is perfect (or sequential) best response with respect to (Πj 6=ico

e(Yj), ui). An element in a perfectly (or

sequentially) rationalizable set is said to be a perfectly (or sequentially) rationalizable strategy profile.

That is, Y is a perfectly rationalizable set if, for each player i and yi ∈ Yi, we can find a strategy

profile y−i ∈ Πj 6=ico
e(Yj) and a trembling sequence which converges to (yi, y−i) such that yi is a best

response along the trembling sequence. In simultaneous-move games, the perfectly rationalizable set is

related to Herings and Vannetelbosch’s (1999) definition of “weakly perfect rationalizability.” Similarly,

Y is a sequentially rationalizable set if for each player i and yi ∈ Yi, we can find a consistent assessment

((yi, y−i) , µ) where y−i ∈ Πj 6=ico
e(Yj) such that yi is a sequential best response. The sequentially

rationalizable set is associated with Dekel et al.’s (1999, 2002) notion of sequential rationalizablility.

Definition A3 (Dekel et al. (1999, 2002)). A strategy profile ŷ ∈ Y is a sequentially rationalizable

self-confirming equilibrium (SRSCE) if there exists Y = Πi∈NYi ⊆ Y, such that for each i ∈ N and

yi ∈ Yi, we can find a consistent assessment (y, µ), with the restrictions that (i) y−i ∈ Πj 6=ico
e(Yj), (ii)

15By allowing for distinct trembling sequences for different players, Aryal and Stauber (2014) introduced the notions
of trembling-hand perfect equilibrium and robust sequential equilibrium in extensive games with ambiguity averse
players.
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y and ŷ yield a same distribution over terminal nodes, and (iii) yi is a sequential best response under

(y, µ).

7 Appendix B: Proofs

For each player i ∈ N and Y−i ⊆ Y−i, let

PBi(Y−i, ui) ≡ {yi ∈ Yi : yi is a perfect best response with respect to (Y−i, ui)} ;

SBi(Y−i, ui) ≡ {yi ∈ Yi : yi is a sequential best response with respect to (Y−i, ui)} .

Let cl(Ri) and vclUi(Ri) denote the closure of the perfectly-rational state set Ri and vertical closure of

the perfectly-rational state set Ri (on Ui), respectively; that is,

cl(Ri) ≡
{

(ui, x, yi) ∈ Ui × Y× Yi : ∃
{(
uti, x

t, yti
)}∞

t=1
∈ Ri s.t.

(
uti, x

t, yti
)
→ (ui, x, yi)

}
;

vclUi(Ri) ≡
{

(ui, x, yi) ∈ Ui × Y× Yi : ∃
{(
ui, x

t, yti
)}∞

t=1
∈ Ri s.t.

(
ui, x

t, yti
)
→ (ui, x, yi)

}
.

Let

Q (Y−i) ≡ {(ui, x, yi) ∈ Ui × Y× Yi : xi = yi and x−i ∈ Y−i }

denote the set of “consistent-belief” states at which player i’s belief about the opponent players’ behavior

lies in the given set Y−i and the belief about his own behavior is consistent with his strategy.

To prove Theorem 1, we need the following four lemmas.

Lemma 1. In an extensive form Γ with perfect recall, for each player i ∈ N and Y−i ⊆ Y−i (a) yi ∈
PBi(Y−i, ui)⇔ ∃ (ui, x, yi) ∈ vclUi(Ri)∩Q (Y−i); (b) yi ∈ SBi(Y−i, ui)⇔ ∃ (ui, x, yi) ∈ cl(Ri)∩Q (Y−i).

Proof: (a) Suppose yi ∈ PBi(Y−i, ui). Then, there exist yti  yi and xt−i  x−i ∈ Y−i such that(
ui,
(
yti , x

t
−i
)
, yi
)
∈ Ri for all t. Since

(
ui,
(
yti , x

t
−i
)
, yi
)
→ (ui, (yi, x−i) , yi), (ui, x, yi) ∈ vclUi(Ri) ∩

Q (Y−i). Conversely, suppose (ui, x, yi) ∈ vclUi (Ri), x−i ∈ Y−i and xi = yi. Then there exists a

sequence
(
ui, x

t, yti
)
∈ Ri converging to (ui, x, yi). Since Γ is finite and yti → yi, there is a sufficiently

large T such that, for all t ≥ T and h ∈ Hi, ah ∈support(yh) implies ah ∈support
(
yth
)

and ah ∈
arg maxa′h∈Ah

vi
((
a′h, x

t
−h
)
, ui
)
. Therefore, yh ∈ arg maxy′h∈Yh

vi
((
y′h, x

t
−h
)
, ui
)

for all t ≥ T and all

h ∈ Hi. That is, yi ∈ PBi(Y−i, ui).

(b) It suffices to show yi ∈ SBi(Y−i, ui) iff there exist uti → ui and
(
yti , x

t
−i
)
 (yi, x−i) such that

x−i ∈ Y−i, yh ∈ arg maxy′h∈Yh
vi
((
y′h, x

t
−h
)
, uti
)

for all t and all h ∈ Hi.

”⇐”: Let xt =
(
yti , x

t
−i
)
 (yi, x−i) = x such that x−i ∈ Y−i. Without loss of generality, as-

sume
(
xt, µti

)
→ (x, µi), where µti is derived from xt using Bayes’ rule. Suppose that there exist

uti → ui such that yh ∈ arg maxy′h∈Yh
vi
((
y′h, x

t
−h
)
, uti
)

for all t and all h ∈ Hi. Then, for all
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h ∈ Hi and all t, vi
(
(yh, x

t
−h), uti|h

)
≥ vi

(
(y′h, x

t
−h), uti|h

)
∀y′h ∈ Yh.16 Since vi((yh, ·) , ·|h) is con-

tinuous, vi ((yh, x−h) , ui|h) ≥ vi ((y′h, x−h) , ui|h). Since Γ is perfect recall, every sequential optimal

strategy satisfies the one deviation property (see, Perea 2002), for all h ∈ Hi, vi ((yi, x−i) , ui|h) ≥
vi ((y′i, x−i) , ui|h) ∀y′i ∈ Yi. That is, yi ∈ SBi(Y−i, ui).

”⇒”: Let yi ∈ SBi(Y−i, ui). Then, there is
((
yti , x

t
−i
)
, µti
)
→ ((yi, x−i) , µi) such that x−i ∈

Y−i and yi is sequentially optimal against the assessment ((yi, x−i) , µi). Denote (yi, x−i) = x and(
yti , x

t
−i
)

= xt. Clearly, xt  x. We proceed to construct a payoff sequence uti → ui such that

yh ∈ arg maxy′h∈Yh
vi
((
y′h, x

t
−h
)
, uti
)

for all t and all h ∈ Hi.

Since Γ is finite and perfect recall holds, we can define a (finite) partition
{
H l
i

}L
l=1

of the set Hi

as follows: H0
i = ∅, H l

i ≡
{
h ∈ Hi\ ∪`<l H`

i : no h′ ∈
[
Hi\ ∪`<l H`

i

]
\h is reached by h

}
for all l ≥ 1.

Therefore, for all t and l = 1, · · · , L, we can define ut,li recursively as follows: Let ut,0i ≡ ui,

ut,li (z) ≡

{
ut,l−1
i (z) + δta∗h

, if z is not precluded by a∗h ∈support(yh) from h

ut,l−1
i (z), otherwise

,

where h ∈ H l
i , support(yh) = {ah ∈ Ah : yh (ah) > 0} and

δta∗h
= max

ah∈Ah

vi

((
ah, x

t
−h
)
, ut,l−1

i |h
)
− vi

((
a∗h, x

t
−h
)
, ut,l−1

i |h
)
.

Therefore, for l = 1, · · · , L, yh ∈ arg maxy′h∈Yh
vi

((
y′h, x

t
−h
)
, ut,li |h

)
∀h ∈ H l

i . For all ah, a′h ∈ Ah,

vi

((
ah, x

t
−h
)
, ut,l+1

i |h
)
− vi

((
a′h, x

t
−h
)
, ut,l+1

i |h
)

= vi

((
ah, x

t
−h
)
, ut,li |h

)
− vi

((
a′h, x

t
−h
)
, ut,li |h

)
.

By induction on l, we have yh ∈ arg maxy′h∈Yh
vi

((
y′h, x

t
−h
)
, ut,li

)
∀h ∈ ∪l`=1H

`
i . Hence, yh ∈

arg maxy′h∈Yh
vi

((
y′h, x

t
−h
)
, ut,Li

)
∀h ∈ Hi, which implies that

(
uti,
(
yti , x

t
−i
)
, yi
)
∈ Ri.

It remains to show ut,Li → uLi = ui. We prove this by induction on l. Clearly, ut,0i → ui trivially

holds. Suppose ut,`i → u`i = ui for ` ≤ l−1. By construction of ut,li , it suffices to show δta∗h
→ 0 ∀h ∈ H l

i .

Let âh ∈ arg maxah∈Ah
vi

((
ah, x

t
−h
)
, ut,l−1

i |h
)

. Because of the continuity of vi, for any ε > 0 there is

a sufficiently large T such that, for all t > T ,

vi

((
âh, x

t
−h
)
, ut,l−1

i |h
)
− vi

(
(âh, x−h) , ul−1

i |h
)

< ε;

vi

(
(a∗h, x−h) , ul−1

i |h
)
− vi

((
a∗h, x

t
−h
)
, ut,l−1

i |h
)

< ε.

Since yh ∈ arg maxy′h∈Yh
vi
(
(y′h, x−h) , uti

)
and, by the induction hypothesis, ui = ul−1

i ,

vi

(
(âh, x−h) , ul−1

i |h
)
− vi

(
(a∗h, x−h) , ul−1

i |h
)
≤ 0.

16For any y′i ∈ Yi, we define vi
((
y′i, x

t
−i

)
, ut

i|h
)
≡ vi

(
y′i,

(
xt−i, µ

t
i

)
, ut

i|h
)
.
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Therefore, vi

((
âh, x

t
−h
)
, ut,l−1

i |h
)
− vi

((
a∗h, x

t
−h
)
, ut,l−1

i |h
)
< 2ε, i.e., δta∗h

→ 0.17 �

Lemma 2: Let W ⊆ Rn+m be a semi-algebraic set. (a) cl (W ) and vclRn (W ) are semi-algebraic. (b)

There exists a closed, lower-dimensional semi-algebraic subset E ⊂ Rn such that for all x ∈ Rn\E,

{y ∈ Rm : (x, y) ∈ cl (W )} = {y ∈ Rm : (x, y) ∈ vclRn (W )}.

Proof: (a) vclRn (W ) can be rewritten as{
(x, y) ∈ Rn × Rm : ∀ε > 0, ∃

(
x, y′

)
∈W s.t.

∥∥y − y′∥∥ < ε
}

,

where ‖·‖ is the Euclidean norm. Since W is semi-algebraic, it follows from Tarski-Seidenberg Theorem

that vclRn (W ) is also semi-algebraic. Similarly, cl (W ) is semi-algebraic.

(b) This proof is similar to the proof of Theorem 4 in BZ94. Define f , g: Rn × Rm → R by

f (x, y) ≡ inf
(x′,y′)∈W

‖(x, y)− (x′, y′)‖

g (x, y) ≡ inf
(x,y′)∈W

‖(x, y)− (x, y′)‖
,

where x and x′ belong to Rn, y and y′ belong to Rm.

Define

E = {x ∈ Rn : ∃ (x, y) ∈W , f (x, y) = 0 and g (x, y) > 0} .

Since f and g are semi-algebraic functions, E is a semi-algebraic set. Note that (x, y) ∈ cl (W ) if and

only if f(x, y) = 0; and (x, y) ∈ vclRn (W ) if and only if g(x, y) = 0. Thus, (x, y) ∈ cl (W ) \vclRn (W )

implies x ∈ E. Therefore, for all x ∈ Rn\E, {y ∈ Rm : (x, y) ∈ cl (W )} = {y ∈ Rm : (x, y) ∈ vclRn (W )}.
Suppose E is not lower-dimensional in Rn. Then there is a semi-algebraic open set O ⊆ Rn and an ε > 0

with the property that for any x ∈ O there exists (x, y) ∈ W such that f (x, y) = 0 and g (x, y) ≥ ε.

The set

G = {(x, y) ∈ O × Rm : f (x, y) = 0 and g (x, y) ≥ ε}

is semi-algebraic and its projection onto Rn is all of O. So we can choose a semi-algebraic selection

β : O → Rm with the property that (x, β (x)) ∈ G. By BZ94’s (p.786) Lemma, there exists a semi-

algebraic open set O′ ⊂ O on which β is continuous. Since (x, β (x)) ∈ cl(W ) for any w ∈ O′, there

is a sequence
{(
xt, yt

)}∞
t=1

in W with limit (x, β (x)). From the continuity of β,
∥∥β (xt)− β (x)

∥∥→ 0.

Thus for t large enough, g
(
xt, β

(
xt
))
< ε, which contradicts the construction of β. Therefore, E is a

lower-dimensional in Rn and the result follows. �

Lemma 3. Consider an extensive form Γ with perfect recall. For each player i, there is a closed, lower-

dimensional semi-algebraic subset U0
i ⊂ Ui such that, for any Y−i ⊆ Y−i, PBi(Y−i, ui) = SBi(Y−i, ui)

17Chakrabarti and Topolyan (2016) adopted a similar backward approach to show the existence of sequential equi-
librium. They backwardly constructed perturbations on strategies, while here we backwardly construct perturbations
on payoffs.
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∀ui ∈ Ui\U0
i .

Proof: Let Y−i ⊆ Y−i. By Lemma 1, SBi(Y−i, ui) = {yi ∈ Yi : (ui, x, yi) ∈ cl(Ri) ∩ Q (Y−i)}
and PBi(Y−i, ui) = {yi ∈ Yi : (ui, x, yi) ∈ vclUi(Ri) ∩ Q (Y−i)}. By the Tarski-Seidenberg Theorem,

Ri is semi-algebraic. By Lemma 2, cl(Ri) and vclUi(Ri) are generically equivalent on Ui and hence

cl(Ri) ∩Q (Y−i) and vclUi(Ri) ∩Q (Y−i) are generically equivalent on Ui. Therefore, there is a closed,

lower-dimensional semi-algebraic subset U0
i ⊂ Ui such that PBi(Y−i, ui) = SBi(Y−i, ui) ∀ui ∈ Ui\U0

i .

�
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Lemma 4. Let F : U ⇒ Rn and F ′ : U ⇒ Rn. Suppose V 0 ≡
{
u0 ∈ U : F

(
u0
)
6= F ′

(
u0
)}

is a lower

dimensional subset of U . Then F (u) ⊆ F ′ (u) for all u ∈ U at which F (·) is lower hemi-continuous

and F ′ (·) is upper hemi-continuous.

Proof of Lemma 4. Since V 0 is lower-dimensional, V 0 contains no open set in U . Let u ∈ U .

Therefore, we can find a sequence
{
ut
}∞
t=1

in U\V 0 such that ut → u and F
(
ut
)

= F ′
(
ut
)

for all t. If

y ∈ F (u), by lower hemi-continuity of F (·), there exists a subsequence utk → u such that yk → y and

yk ∈ F
(
utk
)

= F ′
(
utk
)
. Since the correspondence F ′ (·) is upper hemi-continuous, y ∈ F ′ (u). That is,

F (u) ⊆ F ′ (u). �

Proof of Theorem 1: By Lemma 3, for each player i ∈ N , there is a closed, lower-dimensional

semi-algebraic subset U0
i ⊂ Ui = R|Z| such that for all ui ∈ Ui\U0

i , PBi(Y−i, ui) = SBi(Y−i, ui) for all

Y−i ⊆ Y−i; hence, PBi(Πj 6=ico
e(Yj), ui) = SBi(Πj 6=ico

e(Yj), ui) for all Πj 6=iYj ⊆ Y−i. Therefore, for all

the payoffs u ∈ U\U0 where U0 = ∪i∈N
(
U0
i × U−i

)
, a course of action σ is perfectly supported by Y in

Γ(u) if and only if σ is sequentially supported by Y in Γ(u). Thus, we find a closed, lower-dimensional

semi-algebraic subset U0 ⊂ U such that Σsequential(u) = Σperfect(u) and >sequential
σ (u) = >perfect

σ (u) for

all u ∈ U\U0 and for an arbitrary given course of action σ in Γ.

Because PBi(Πj 6=ico
e(Yj), ui) = SBi(Πj 6=ico

e(Yj), ui) for all i ∈ N and u ∈ U\U0, {u0 ∈ U :

Υsequential
(
u0
)
6= Υperfect

(
u0
)
} ⊆ U0 is a lower dimensional subset of U . By Lemma 4, Υsequential (u) ⊆

Υperfect (u) for all the payoffs u ∈ U at which Υsequential (·) is lower hemi-continuous and Υperfect (·)
is upper hemi-continuous. But, since any perfect-MACA in Γ(u) is also a sequential-MACA in Γ(u),

Υperfect (u) ⊆ Υsequential (u) for all u ∈ U . Hence, Υsequential (u) = Υperfect (u) for all the payoffs u ∈ U
at which Υsequential (·) is lower hemi-continuous and Υperfect (·) is upper hemi-continuous. Similarly, for

an arbitrary given course of action σ in Γ, >sequential
σ (u) = >perfect

σ (u) for all the payoffs u ∈ U at which

>sequential
σ (·) is lower hemi-continuous and >perfect

σ (·) is upper hemi-continuous. �

Proof of Corollary 1: Define

o
R= {(u, x, y) ∈ U × Y× Y : (ui, x, yi) ∈ Ri ∀i} ,

that is,
o
R is the set of “joint” perfectly rational states in which the players have consistently aligned

beliefs about the opponent players’ behavior. Clearly, (u, x, y) ∈ vclU
(
o
R
)

iff there exists a common

sequence xt  x such that for each player i, yi is the best response along the trembling sequence

xt. By Definition A1(i), (u, y, y) ∈ vclU

(
o
R
)

iff y is a perfect equilibrium; by Kreps and Wilson’s

(1982) Proposition 6, (u, y, y) ∈ cl

(
o
R
)

iff y is a sequential equilibrium strategy profile. By the

Tarski-Seidenberg Theorem,
o
R is semi-algebraic. By Lemma 2, cl

(
o
R
)

and vclU

(
o
R
)

are generically

equivalent. Consequently, there is a closed, lower-dimensional semi-algebraic subset U0 ⊂ U such that
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for all u ∈ U\U0, any sequential equilibrium strategy profile is a perfect equilibrium in game Γ(u).

Now, suppose that the sequential equilibrium correspondence SE (·) is lower hemi-continuous and

the perfect equilibrium correspondence PE (·) is upper hemi-continuous at u ∈ U . Since
{
u0 ∈ U : SE

(
u0
)
6= PE

(
u0
)}
⊆

U0 is a lower dimensional subset, by Lemma 4, SE (u) ⊆ PE (u). Thus, SE (u) = PE (u). �

Proof of Corollary 2: (i) By Definition A1(iii)-(iv), a strategy profile y ∈ Y is a weakly perfect (or

weakly sequential) equilibrium in Γ(u) iff for each player i, yi ∈ PBi (y−i, ui) = PBi (Πj 6=ico
e(yj), ui)

(or yi ∈ SBi (y−i, ui) = SBi (Πj 6=ico
e(yj), ui)). By Definition 2, the strategy profile y is a weakly perfect

(or weakly sequential) equilibrium in Γ(u) iff y is a perfect (or sequential) MACA in Γ(u). By Theorem

1, for generic u ∈ U\U0, the set of weakly sequential equilibria in Γ(u) coincides with the set of weakly

perfect equilibria in Γ(u).

(ii) By Definition A2, a product set Y = Πi∈NYj ⊆ Y is a perfectly (or sequentially) rationalizable

set in Γ(u) iff for each player i, Yi ⊆ PBi (Πj 6=ico
e(Yj), ui) (or Yi ⊆ SBi (Πj 6=ico

e(Yj), ui)). By Definition

2, the set Y is a perfectly (or sequentially) rationalizable set in Γ(u) iff Y perfectly (or sequentially)

supports the null MACA in Γ(u). By Theorem 1, for generic payoffs u ∈ U\U0, the union of sequentially

rationalizable sets in Γ(u) coincides with the union of perfectly rationalizable sets in Γ(u); that is, the set

of sequentially rationalizable strategy profiles in Γ(u) coincides with the set of perfectly rationalizable

strategy profiles in Γ(u).

(iii) This result follows directly from the following lemma:

Lemma 5. A path resulting from an SRSCE in Definition A3 is a path sequential-MACA in Definition

2 and vice versa.

Proof of Lemma 5: “⇒” Suppose ŷ is an SRSCE in Γ(u). By Definition A3, there exists Y =

Πi∈NYi ⊆ Y, for each i ∈ N and each yi ∈ Yi, we can find y−i ∈ Πj 6=ico
e(Yj) such that yh = ŷh if h ∈ H

is reachable under ŷ and yi ∈ SBi (y−i, ui). Construct a path course of action σ (associated with ŷ) as

follows: For any h ∈ H,

σh =

{
ŷh, if h is reachable under ŷ

∅, otherwise
.

By the construction of σ, if σh 6= ∅, then yh = σh for all y ∈ Y . Moreover, since yi ∈ SBi (y−i, ui) and

y−i ∈ Πj 6=ico
e(Yj), yi ∈ SBi (Πj 6=ico

e(Yj), ui). By Definition 2, the path course of action σ (associated

with ŷ) is a path sequential-MACA in Γ(u) supported by Y .

“⇐” Suppose σ is a path sequential-MACA in Γ(u) supported by Y = Πi∈NYi ⊆ Y. By Definition

2, for each player i and each ŷi ∈ Yi, there exists ŷ−i ∈ Πj 6=ico
e(Yj) such that ŷi ∈ SBi (ŷ−i, ui);

moreover, if σh 6= ∅, yh = σh for all y ∈ Y and hence ŷh = σh. That is, ŷh = σh if h is reachable under

ŷ. By Definition A3, ŷ is an SRSCE that results in the same path σ.

To show the last part of Corollary 2, let σ be a course of action in Γ. Notice that the player-by-

21

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



player union of the sequentially/perfectly σ-supporting sets in Γ(u) is again a sequentially/perfectly

σ-supporting set in Γ(u). Thus, Υsequential
σ (u) is the largest sequentially σ-supporting set and Υperfect

σ (u)

is the largest perfectly σ-supporting set. By Theorem 1, the largest sequentially σ-supporting set

coincides with the largest perfectly σ-supporting set for generic payoffs u ∈ U\U0. �

Proof of Corollary 3: Consider a finite normal form Γ = (N, {Ai}i∈N ). Let
(
W k(u)

)K
k=0

be an

IEWDS procedure in Γ(u), where W k(u) = Πi∈NW
k
i (u) such that W 0

i (u) = Ai and W k
i (u) ⊆ Ai

includes the set of i’s surviving weakly undominated actions in the (k − 1)-th round of elimination for

all k ≥ 1. Let i ∈ N and k = 1, 2, . . . ,K. Because Γ is a normal form, by Pearce’s (1984) Lemma

3, ai ∈ W k
i (u) is not strictly dominated in W k(u) iff ai ∈ SBi

(
∆
(
W k
−i(u)

)
, ui
)
; by Pearce’s (1984)

Lemma 4, ai ∈ W k
i (u) is not weakly dominated in W k(u) iff ai ∈ PBi

(
∆
(
W k
−i(u)

)
, ui
)
. By Lemma

3, there is a closed, lower-dimensional subset U0
i ⊂ Ui such that for all ui ∈ Ui\U0

i , SBi (Y−i, ui) =

PBi (Y−i, ui) ∀Y−i ⊆ ∆(A−i). Letting Y−i = {y−i ∈ ∆(A−i) : y−i has full support on W k
−i(u)}, we

have SBi
(
∆
(
W k
−i(u)

)
, ui
)

= PBi
(
∆
(
W k
−i(u)

)
, ui
)

for all ui ∈ Ui\U0
i . Define U0 = ∪i∈N

(
U0
i × U−i

)
.

Therefore, U0 ⊂ U is a closed, lower-dimensional semi-algebraic subset such that for all u ∈ U\U0,

a ∈W k(u)\W k+1(u) iff a ∈W k(u) is strictly dominated in W k(u) and hence
(
W k(u)

)K
k=0

is an IESDS

procedure in Γ(u). Since IESDS is order-independent in finite games, IEWDS is generically an order-

independent procedure. �
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