98 research outputs found

    Expression analysis of OsbZIP transcription factors in resistance response by the rice blast resistance gene Pi36-mediated

    Get PDF
    Plant basic leucine zipper (bZIP) proteins play an essential role in the genes expression and regulation in higher plants. They have been shown to regulate diverse plant specific phenomena, including germination, floral induction and development, seed maturation, photomorphogenesis, biotic and abiotic stresses. Resistance response mediated by the rice blast resistance gene Pi36 is a typical signal transduction, in which 12 OsbZIP genes were differentially expressed by microarray analyses. To understand the potential function of OsbZIP genes during the defense responses against rice blast, the expression analysis of these OsbZIP genes, in response to the blast fungus inoculation and the related defense signal molecules induction, were further conducted using real-time fluorescent quantitative polymerase chain reaction (PCR) technique. Our data indicates that among the 12 OsbZIP genes, the expression level eight tested genes were differentially regulated and maintained to 96 h points post inoculation in rice resistant and susceptible cultivars during Magnaporthe oryzae infection, and all of them were also significantly up-regulated by one or several kinds of exogenous plant hormones stresses. Although, these genes were induced only at early time points (1 to 24 h); it is evident that the OsbZIP genes may be involved in different signaling pathway, and play potential important functions in the defense response to rice blast.Keywords: OsbZIP transcription factors, rice blast, resistance response, plant hormones stresses.African Journal of Biotechnology Vol. 12(34), pp. 5294-530

    Inhibition of pancreatic protein secretion by ghrelin in the rat

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65653/1/j.1469-7793.2001.0231k.x.pd

    A multi-view latent variable model reveals cellular heterogeneity in complex tissues for paired multimodal single-cell data

    Get PDF
    Motivation Single-cell multimodal assays allow us to simultaneously measure two different molecular features of the same cell, enabling new insights into cellular heterogeneity, cell development and diseases. However, most existing methods suffer from inaccurate dimensionality reduction for the joint-modality data, hindering their discovery of novel or rare cell subpopulations. Results Here, we present VIMCCA, a computational framework based on variational-assisted multi-view canonical correlation analysis to integrate paired multimodal single-cell data. Our statistical model uses a common latent variable to interpret the common source of variances in two different data modalities. Our approach jointly learns an inference model and two modality-specific non-linear models by leveraging variational inference and deep learning. We perform VIMCCA and compare it with 10 existing state-of-the-art algorithms on four paired multi-modal datasets sequenced by different protocols. Results demonstrate that VIMCCA facilitates integrating various types of joint-modality data, thus leading to more reliable and accurate downstream analysis. VIMCCA improves our ability to identify novel or rare cell subtypes compared to existing widely used methods. Besides, it can also facilitate inferring cell lineage based on joint-modality profiles

    Regulation of hepatic autophagy by stress‐sensing transcription factor CREBH

    Full text link
    Autophagy, a lysosomal degradative pathway in response to nutrient limitation, plays an important regulatory role in lipid homeostasis upon energy demands. Here, we demonstrated that the endoplasmic reticulum–tethered, stress‐sensing transcription factor cAMP‐responsive element‐binding protein, hepatic‐specific (CREBH) functions as a major transcriptional regulator of hepatic autophagy and lysosomal biogenesis in response to nutritional or circadian signals. CREBH deficiency led to decreased hepatic autophagic activities and increased hepatic lipid accumulation upon starvation. Under unfed or during energy‐demanding phases of the circadian cycle, CREBH is activated to drive expression of the genes encoding the key enzymes or regulators in autophagosome formation or autophagic process, including microtubule‐associated protein IB‐light chain 3, autophagy‐related protein (ATG)7, ATG2b, and autophagosome formation Unc‐51 like kinase 1, and the genes encoding functions in lysosomal biogenesis and homeostasis. Upon nutrient starvation, CREBH regulates and interacts with peroxisome proliferator–activated receptor α (PPARα) and PPARÎł coactivator 1α to synergistically drive expression of the key autophagy genes and transcription factor EB, a master regulator of lysosomal biogenesis. Furthermore, CREBH regulates rhythmic expression of the key autophagy genes in the liver in a circadian‐dependent manner. In summary, we identified CREBH as a key transcriptional regulator of hepatic autophagy and lysosomal biogenesis for the purpose of maintaining hepatic lipid homeostasis under nutritional stress or circadian oscillation.—Kim, H., Williams, D., Qiu, Y., Song, Z., Yang, Z., Kimler, V., Goldberg, A., Zhang, R., Yang, Z., Chen, X., Wang, L., Fang, D., Lin, J. D., Zhang, K. Regulation of hepatic autophagy by stress‐sensing transcription factor CREBH. FASEB J. 33, 7896–7914 (2019). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154423/1/fsb2fj201802528r-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154423/2/fsb2fj201802528r.pd

    IGFBP2 Plays an Essential Role in Cognitive Development during Early Life

    Get PDF
    Identifying the mechanisms underlying cognitive development in early life is a critical objective. The expression of insulin-like growth factor binding protein 2 (IGFBP2) in the hippocampus increases during neonatal development and is associated with learning and memory, but a causal connection has not been established. Here, it is reported that neurons and astrocytes expressing IGFBP2 are distributed throughout the hippocampus. IGFBP2 enhances excitatory inputs onto CA1 pyramidal neurons, facilitating intrinsic excitability and spike transmission, and regulates plasticity at excitatory synapses in a cell-type specific manner. It facilitates long-term potentiation (LTP) by enhancing N-methyl-d-aspartate (NMDA) receptor-dependent excitatory postsynaptic current (EPSC), and enhances neurite proliferation and elongation. Knockout of igfbp2 reduces the numbers of pyramidal cells and interneurons, impairs LTP and cognitive performance, and reduces tonic excitation of pyramidal neurons that are all rescued by IGFBP2. The results provide insight into the requirement for IGFBP2 in cognition in early life

    Relationships between Hematopoiesis and Hepatogenesis in the Midtrimester Fetal Liver Characterized by Dynamic Transcriptomic and Proteomic Profiles

    Get PDF
    In fetal hematopoietic organs, the switch from hematopoiesis is hypothesized to be a critical time point for organogenesis, but it is not yet evidenced. The transient coexistence of hematopoiesis will be useful to understand the development of fetal liver (FL) around this time and its relationship to hematopoiesis. Here, the temporal and the comparative transcriptomic and proteomic profiles were observed during the critical time points corresponding to the initiation (E11.5), peak (E14.5), recession (E15.5), and disappearance (3 ddp) of mouse FL hematopoiesis. We found that E11.5-E14.5 corresponds to a FL hematopoietic expansion phase with distinct molecular features, including the expression of new transcription factors, many of which are novel KRAB (Kruppel-associated box)-containing zinc finger proteins. This time period is also characterized by extensive depression of some liver functions, especially catabolism/utilization, immune and defense, classical complement cascades, and intrinsic blood coagulation. Instead, the other liver functions increased, such as xenobiotic and sterol metabolism, synthesis of carbohydrate and glycan, the alternate and lectin complement cascades and extrinsic blood coagulation, and etc. Strikingly, all of the liver functions were significantly increased at E14.5-E15.5 and thereafter, and the depression of the key pathways attributes to build the hematopoietic microenvironment. These findings signal hematopoiesis emigration is the key to open the door of liver maturation

    The water lily genome and the early evolution of flowering plants

    Get PDF
    Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1–3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.Supplementary Tables: This file contains Supplementary Tables 1-21.National Natural Science Foundation of China, the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201909) and State Key Laboratory of Tree Genetics and Breeding, the Fujian provincial government in China, the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement and the Special Research Fund of Ghent University.http://www.nature.com/naturecommunicationsam2021BiochemistryGeneticsMicrobiology and Plant Patholog
    • 

    corecore