132 research outputs found

    Effects of Spermidine on Cell Proliferation, Migration, and Inflammatory Response in Porcine Enterocytes.

    Full text link
    peer reviewed[en] BACKGROUND: Polyamines have been demonstrated to be beneficial to porcine intestinal development. Our previous study showed that putrescine mitigates intestinal atrophy in weanling piglets and suppresses inflammatory response in porcine intestinal epithelial cells, it is still unknown the role of spermidine in mediating putrescine function. OBJECTIVE: The current study aimed to investigate the effect of spermidine on the proliferation, migration, and inflammatory response in porcine intestinal epithelial cells (IPEC-J2 cell line). METHODS: The effects of spermidine on proliferation and migration of IPEC-J2 cells were measured. Difluoromethyl ornithine (DFMO) and diethylglyoxal bis (guanylhydrazone) (DEGBG) were used to block the production of putrescine and spermidine, respectively. A cell inflammation model was established with lipopolysaccharides (LPS) stimulation. Gene expression and protein abundance were determined by real-time quantitative PCR and western blotting, respectively. RESULT: Spermidine significantly enhanced cell proliferation in DFMO (or/and) DEGBG treated IPEC-J2 cells (p 0.05). Similarly, spermidine but not putrescine significantly elevated the rate of migration in DEGBG treated IPEC-J2 cells (p < 0.05). Spermidine deprivation by DEGBG dramatically enhanced mRNA abundance of pro-inflammatory cytokines IL-8, IL-6, and TNF-α (p < 0.05), and the addition of spermidine attenuated excessive expression of those inflammatory pro-inflammatory cytokines, moreover, spermidine but not putrescine suppressed the phosphorylation of NF-κB induced by DEGBG. Spermidine supplementation also significantly suppressed LPS-induced the expression of TNF-α. CONCLUSIONS: The present study highlights a novel insight that putrescine may be converted into spermidine to modulate cell proliferation, migration, and inflammatory response on porcine enterocytes

    Ursolic Acid Inhibits Proliferation and Induces Apoptosis of Cancer Cells In Vitro and In Vivo

    Get PDF
    The aims of the study are to explore the effect of ursolic acid (UA) on the growth of gastric cancer cell line BGC-803 and hepatocellular cancer cell H22 xenograft and to understand the mechanism. UA inhibits growth of BGC-803 cells in vitro in dose-dependent and time-dependent manner. Treated with UA in vivo, tumor cells can be arrested to G0/G1 stage. The apoptotic rate was significantly increased in tumor cells treated with UA both in vitro and in vivo. DNA fragmentation was found in BGC-803 cells exposed to UA. UA activated caspase-3, -8, and -9 and down regulated expression of Bcl-2 in BGC-803 cells. The expression of caspase-3 and -8 was elevated in tumor cells from xenograft treated with UA. 18F-FLT PET-CT imaging confirmed tumor model and UA effectiveness. Our results indicated that UA inhibits growth of tumor cells both in vitro and in vivo by decreasing proliferation of cells and inducing apoptosis

    Downregulation of MicroRNA-4463 Attenuates High-Glucose- and Hypoxia-Induced Endothelial Cell Injury by Targeting PNUTS

    Get PDF
    Background/Aims: Vascular complications are the main reasons for disability and mortality associated with type 2 diabetes mellitus (T2DM) and numerous microRNAs (miRNAs) are involved in this process. Our previous study demonstrated that miR-4463 was increased in the plasma of T2DM patients combined with arteriosclerosis of low extremity artery (ASO). However, the role of miR-4463 remains unclear. Methods: miR-4463 expression in the vascular tissues of patients with ASO and T2DM and in human umbilical vein endothelial cells (HUVECs) was detected by qPCR. Cell survival and apoptosis was analyzed via Cell Counting Kit-8 and flow cytometry assays, respectively. Protein expression was determined by Western blot and protein subcellular localization was detected with immunofluorescence. A dual-luciferase assay was used to elucidate the target gene of miR-4463. Results: miR-4463 was elevated in the vascular tissues of patients with T2DM and ASO. In HUVECs, both 25 mmol/L glucose (high glucose, HG) and hypoxia induced miR-4463 expression. Downregulation of miR-4463 promoted HUVEC survival and reduced cell apoptosis under HG and/or hypoxic conditions by facilitating the expression of protein phosphatase-1 nuclear targeting subunit (PNUTS), X-linked inhibitor of apoptosis protein (XIAP), p-AKT, p-Bad, increased the Bcl-2/Bax ratio, as well as downregulated cleaved caspase 3 expression. Mechanistically, we identified PNUTS as a direct target gene of miR-4463. Both the inhibition of AKT phosphorylation and silencing of PNUTS diminished the effect of miR-4463 on HUVEC apoptosis. Moreover, downregulation of miR-4463 enhanced PNUTS to enable PTEN nuclear localization, which resulted in AKT phosphorylation. Conclusion: Our results suggest that downregulation of miR-4463 attenuates cell apoptosis by directly enhancing PNUTS expression to promote PTEN nuclear localization, subsequently activating AKT signaling pathway in HUVECs under HG and/ or hypoxic conditions

    Critical Role of Cysteine-Rich Protein 61 in Mediating the Activation of Renal Fibroblasts

    Get PDF
    ObjectiveTo explore the expression of cysteine-rich protein 61 (Cyr61) in ischemic renal fibrosis and the role of Cyr61 in mediating the activation of renal fibroblasts.Methods(1) The rat model of renal fibrosis was established after ischemia-reperfusion acute renal injury (IR-AKI). We detected the renal function by biochemical test, evaluated the fibrosis by Masson staining, and detected the expression of Cyr61 by western blotting. (2) Bioinformatics technique was adopted to analyze the expression of Cyr61 in activated renal fibroblasts. (3) Normal rat kidney fibroblast cells (NRK-49F cells) with over-expression of Cyr61 (Cyr61+) and low-expression of it (Cyr61--) were established by plasmid transfection. Then part of the cells were activated by TGF-β1 and NRK-49F cells were divided into control group, activated group, Cyr61+/Cyr61-- group and Cyr61+/Cyr61-- activated group. The expression of Cyr61 and fibrosis related factors (Col1α1, Col3α1, MMP9, and MMP13) were ascertained by PCR and western blotting. Cell proliferation was discovered by CCK8 method, cell cycle was analyzed by flow cytometry, and the transcription of cell senescence related factors (P53, P21, Rb, and P16) were ascertained by PCR method.Results(1) In the process of fibrosis after IR-AKI, the area of collagen fiber was most obviously at AKI 1W, while the Cyr61 protein was at the lowest level at AKI 1W. (2) Gene chip analysis showed that the expression of Cyr61 was decreased in renal fibroblasts after IR. (3) Compared with control group, Cyr61+ group expressed less Col1α1 or Col3α1, as well as more MMP9 and MMP13. At the same time, the proliferation of Cyr61+ group decreased and cells in G1 phases increased with more transcription of P53, P21, and Rb (all P &lt; 0.05). Compared with activated group, the results of Cyr61+ activated group were similar to the above. The above effects of low expression group were just the opposite. In addition, there was no difference in the transcription of P16 among these groups (P &gt; 0.05).ConclusionCyr61 may not only inhibit the fibrotic phenotype of fibroblasts, but may also inhibit proliferation by promoting fibroblasts arrest in G1 phase through the P53/P21/Rb interrelated cell senescence pathway, subsequently affecting the process of ischemic renal fibrosis

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Autotoxins in continuous tobacco cropping soils and their management

    Get PDF
    Tobacco belongs to the family Solanaceae, which easily forms continuous cropping obstacles. Continuous cropping exacerbates the accumulation of autotoxins in tobacco rhizospheric soil, affects the normal metabolism and growth of plants, changes soil microecology, and severely reduces the yield and quality of tobacco. In this study, the types and composition of tobacco autotoxins under continuous cropping systems are summarized, and a model is proposed, suggesting that autotoxins can cause toxicity to tobacco plants at the cell level, plant-growth level, and physiological process level, negatively affecting soil microbial life activities, population number, and community structure and disrupting soil microecology. A combined strategy for managing tobacco autotoxicity is proposed based on the breeding of superior varieties, and this approach can be combined with adjustments to cropping systems, the induction of plant immunity, and the optimization of cultivation and biological control measures. Additionally, future research directions are suggested and challenges associated with autotoxicity are provided. This study aims to serve as a reference and provide inspirations needed to develop green and sustainable strategies and alleviate the continuous cropping obstacles of tobacco. It also acts as a reference for resolving continuous cropping challenges in other crops

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore