176 research outputs found

    Pharmacological Study of Phenolic Components in Parkinson's Disease

    Get PDF
    In this study, cell experiments were conducted to investigate the effects of extracts on cell viability and apoptosis of Parkinson model in vitro, as well as the expression of cysteine protease-3 (Caspase-3) and B lymphocytoma-2-associated X protein (BAX). The results showed that extract of phenols could improve the loss of cell viability and apoptosis induced by MPP+, and inhibit the enhanced expression of Bax and Caspase-3 by MPP+. The potential targets and signaling pathways of phenols in the treatment of Parkinson's disease were predicted by network pharmacology

    NH2+ implantations induced superior hemocompatibility of carbon nanotubes

    Get PDF
    NH(2)(+) implantation was performed on multiwalled carbon nanotubes (MWCNTs) prepared by chemical vapor deposition. The hemocompatibility of MWCNTs and NH(2)(+)-implanted MWCNTs was evaluated based on in vitro hemolysis, platelet adhesion, and kinetic-clotting tests. Compared with MWCNTs, NH(2)(+)-implanted MWCNTs displayed more perfect platelets and red blood cells in morphology, lower platelet adhesion rate, lower hemolytic rate, and longer kinetic blood-clotting time. NH(2)(+)-implanted MWCNTs with higher fluency of 1 × 10(16) ions/cm(2) led to the best thromboresistance, hence desired hemocompatibility. Fourier transfer infrared and X-ray photoelectron spectroscopy analyses showed that NH(2)(+) implantation caused the cleavage of some pendants and the formation of some new N-containing functional groups. These results were responsible for the enhanced hemocompatibility of NH(2)(+)-implanted MWCNTs

    Meconium ileus in cystic fibrosis is not linked to central repetitive region length variation in MUC1, MUC2, and MUC5AC

    Get PDF
    Mucins are excellent candidates for contributing to the presence of meconium ileus (MI) in cystic fibrosis (CF) due to their extensive genetic variation and known function in intestinal physiology. The length of variants in mucin central repetitive regions has not been explored as “risk” factors for MI in CF

    Safety and efficacy of iodine-125 seed strand for intraluminal brachytherapy on ureteral carcinoma

    Get PDF
    ObjectiveOur aim is to evaluate the safety and efficacy of iodine-125 seed strand for intraluminal brachytherapy on ureteral carcinoma.MethodsFrom November 2014 to November 2021, 22 patients with ureteral cancer not suitable for surgical resection were enrolled. Iodine-125 seed strand was inserted under c-arm CT and fluoroscopic guidance. The technical success rate, complications, disease control rate, and survival time were evaluated. Hydronephrosis Girignon grade and ureteral cancer sizes before and after treatment were compared.ResultsA total of 46 seed strands were successfully inserted and replaced, with a technical success rate of 100% and median procedure time of 62 min. No procedure-related death, ureteral perforation, infection, or severe bleeding occurred. Minor complications were observed in eight (36.4%) patients, and migration of seed strand was the most common complication. Six months after seed strand brachytherapy, one complete response, three partial responses, and five stable diseases were evaluated, and the disease control rate was 64.3%. The Girignon grade of hydronephrosis was significantly improved 1 to 3 months after seed strand insertion. Disease control rates were 94.4, 62.5, and 64.3% at 1-, 3-, and 6-month follow-up. Twenty patients were successfully followed up, with a mean follow-up of 18.0 ± 14.5 months. The median overall survival and progress-free survival were 24.7 and 13.0 months, respectively.ConclusionIodine-125 seed strand is safe and effective for intraluminal brachytherapy and can be used as an alternative to patients with ureteral carcinoma who are not suitable for surgical resection or systemic combined therapy

    A green and template-free synthesis process of superior carbon material with ellipsoidal structure as enhanced material for supercapacitors.

    Get PDF
    Metal Organic Frameworks or related carbon materials are the ideal materials for supercapacitors due to their high surface area and unique porous structure. Here, we propose a new green and recyclable synthesis method of porous carbon. Aluminum hydroxide (Al(OH)₃) and trimesic acid (BTC) are employed as raw materials to obtain aluminium trimesic (denoted as Al-BTC) via their covalent reaction. Then, the porous carbon is obtained through carbonization and dissolving process to remove the aluminum oxide (Al₂O₃). Al(OH)₃ is recovered by the Bayer method for the next batch. The SEM images show that the porous carbon has rugby-like morphology with the same of 400 nm wide and 1000 nm long which indicates the porous carbon with c/a ratio of 2.5 providing the largest specific volume surface area. The sample offers 306.4 F gˉ¹at 1 A gˉ¹, and it can retain 72.2% even at the current density of 50 A gˉ¹. In addition, the porous carbon provides excellent durability of 50,000 cycles at 50 A gˉ¹ with only 5.05% decline of capacitance. Moreover, the porous carbon has an ultrafast charge acceptance, and only 4.4 s is required for one single process, which is promising for application in electric vehicles

    NIR-II fluorescence microscopic bioimaging for intrahepatic angiography and the early detection of Echinococcus multilocularis microlesions

    Get PDF
    Hepatic alveolar echinococcosis (HAE) is caused by the metacestode of Echinococcus multilocularis, which shows characteristics of malignant tumors with high mortality. However, traditional diagnostic imaging methods are still not sufficient for the recognition of HAE microlesions in the early stages. Near-infrared-II (900–1700 nm, NIR-II) fluorescence microscopic imaging (NIR-II-FMI) has shown great potential for biomedical detection. A novel type of negative target imaging method based on NIR-II-FMI with the assistance of indocyanine green (ICG) was explored. Then, NIR-II-FMI was applied to the early detection of HAE for the first time. The negative targeting NIR-II fluorescence imaging of HAE-infected mice at different stages with the assistance of ICG under 808 nm of laser irradiation was obtained. Especially, HAE microlesions at the early stage were detected clearly. Moreover, clear intrahepatic angiography was achieved under the same NIR-II-FMI system

    Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Get PDF
    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica

    High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity

    Get PDF
    This study focuses on the development of a hydrothermal method for the rapid synthesis of good quality copper benzene-1,3,5-tricarboxylate (referred to as HKUST-1) with high yield under mild preparation conditions to address the issues associated with reported methods. Different synthesis conditions and activation methods were studied to understand their influence on the properties of HKUST-1. It was found that mixing the precursors at 50 °C for 3 h followed by activation via methanol refluxing led to the formation of a product with the highest BET specific surface area of 1615 m2/g and a high yield of 84.1%. The XRD and SEM data illustrated that the product was highly crystalline. The sample was also tested on its capacity in CO2 adsorption. The results showed strong correlation between surface area of the sample and its CO2 uptake at 1 bar and 27 °C. The HKUST-1 prepared in this study demonstrated a high CO2 uptake capacity of 4.2 mmol/g. It is therefore concluded that this novel and efficient method can be used in the rapid preparation of HKUST-1 with high surface area and CO2 uptake capacity
    corecore