32 research outputs found

    RPN: A Word Vector Level Data Augmentation Algorithm in Deep Learning for Language Understanding

    Full text link
    This paper presents a new data augmentation algorithm for natural understanding tasks, called RPN:Random Position Noise algorithm.Due to the relative paucity of current text augmentation methods. Few of the extant methods apply to natural language understanding tasks for all sentence-level tasks.RPN applies the traditional augmentation on the original text to the word vector level. The RPN algorithm makes a substitution in one or several dimensions of some word vectors. As a result, the RPN can introduce a certain degree of perturbation to the sample and can adjust the range of perturbation on different tasks. The augmented samples are then used to give the model training.This makes the model more robust. In subsequent experiments, we found that adding RPN to the training or fine-tuning model resulted in a stable boost on all 8 natural language processing tasks, including TweetEval, CoLA, and SST-2 datasets, and more significant improvements than other data augmentation algorithms.The RPN algorithm applies to all sentence-level tasks for language understanding and is used in any deep learning model with a word embedding layer.Comment: 10 pages, 4 figure

    Interaction Driven Topological Phase Transition in Monolayer CrCl2_2(pyrazine)2_2

    Full text link
    The quadratic band crossing points (QBCPs) at Fermi level in two-dimension have been proposed to be unstable under electron-electron interaction. The possible interaction driven states include quantum anomalous Hall (QAH) state and various nematic ordered states. In this work, motivated by the discovery of ferromagnetic van der Waals layered metal-organic framework CrCl2_2(pyrazine)2_2, we theoretically propose that the single layer of CrCl2_2(pyrazine)2_2 might realize one or some of these interaction driven states based on the QBCP protected by C4C_4 symmetry. By introducing the short-range density-density type repulsion interactions into this system, we have found the phase diagram depending on different interaction range and strength. The exotic phases include the staggered chiral flux state manifesting QAH effect, the site-nematic insulator and the site-nematic Dirac semimetal state. The QAH state is robust against perturbations breaking the QBCP but it is weakened by increasing temperature. The metal-organic framework is tunable by changing the transition-metal elements, which might improve the gap size and stability of this interaction induced QAH state

    Cellular Metabolites Enhance the Light Sensitivity of Arabidopsis Cryptochrome through Alternate Electron Transfer Pathways

    Get PDF
    Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation

    Tunable magnetism and electron correlation in Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) by rare-earth engineering

    Full text link
    Rare-earth engineering is an effective way to introduce and tune the magnetism in topological Kagome magnets, which has been acting as a fertile platform to investigate the quantum interactions between geometry, topology, spin, and correlation. Here we report the structure and properties of three newly discovered Titanium-based Kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) with various magnetic states. They crystalize in the orthogonal space group Fmmm (No.69), where slightly distorted Ti Kagome lattice, RE triangular lattice, Bi honeycomb and triangular lattices stack along the a axis. By changing the rare earth atoms on RE zag-zig chains, the magnetism can be tuned from nonmagnetic YbTi3Bi4 to short-range ordered PrTi3Bi4 (Tanomaly ~ 8.2 K), and finally to ferromagnetic NdTi3Bi4 (Tc ~ 8.5 K). The measurements of resistivity and specific heat capacity demonstrate an evolution of electron correlation and density of states near the Fermi level with different rare earth atoms. In-situ resistance measurements of NdTi3Bi4 under high pressure further reveal a potential relationship between the electron correlation and ferromagnetic ordering temperature. These results highlight RETi3Bi4 as another family of topological Kagome magnets to explore nontrivial band topology and exotic phases in Kagome materials.Comment: Manuscript:17 pages, 5 figures; Supporting information:11 pages, 11 tables and 10 figure

    Genetic, phenotypic and ecological differentiation suggests incipient speciation in two Charadrius plovers along the Chinese coast

    Get PDF
    BackgroundSpeciation with gene flow is an alternative to the nascence of new taxa in strict allopatric separation. Indeed, many taxa have parapatric distributions at present. It is often unclear if these are secondary contacts, e.g. caused by past glaciation cycles or the manifestation of speciation with gene flow, which hampers our understanding of how different forces drive diversification. Here we studied genetic, phenotypic and ecological aspects of divergence in a pair of incipient shorebird species, the Kentish (Charadrius alexandrinus) and the White-faced Plovers (C. dealbatus), shorebirds with parapatric breeding ranges along the Chinese coast. We assessed divergence based on molecular markers with different modes of inheritance and quantified phenotypic and ecological divergence in aspects of morphometric, dietary and climatic niches.ResultsOur integrative analyses revealed small to moderate levels of genetic and phenotypic distinctiveness with symmetric gene flow across the contact area at the Chinese coast. The two species diverged approximately half a million years ago in dynamic isolation with secondary contact occurring due to cycling sea level changes between the Eastern and Southern China Sea in the mid-late Pleistocene. We found evidence of character displacement and ecological niche differentiation between the two species, invoking the role of selection in facilitating divergence despite gene flow.ConclusionThese findings imply that ecology can indeed counter gene flow through divergent selection and thus contributes to incipient speciation in these plovers. Furthermore, our study highlights the importance of using integrative datasets to reveal the evolutionary history and assist the inference of mechanisms of speciation

    OCT4: A penetrant pluripotency inducer

    Get PDF
    © 2014 Wang and Jauch; licensee BioMed Central Ltd. Native OCT4 protein has the intrinsic ability of crossing cellular membranes to enter cells. This finding could revive efforts to induce pluripotency with proteins replacing nucleic acid-based approaches, and raises the intriguing question as to whether OCT4 can act non-cell-autonomously.Link_to_subscribed_fulltex

    Caffeoylquinic Acid Derivatives Extract of Erigeron multiradiatus Alleviated Acute Myocardial Ischemia Reperfusion Injury in Rats through Inhibiting NF-KappaB and JNK Activations

    No full text
    Erigeron multiradiatus (Lindl.) Benth. has been used in Tibet folk medicine to treat various inflammatory diseases. The aim of this study was to investigate antimyocardial ischemia and reperfusion (I/R) injury effect of caffeoylquinic acids derivatives of E. multiradiatus (AE) in vivo and to explain underling mechanism. AE was prepared using the whole plant of E. multiradiatus and contents of 6 caffeoylquinic acids determined through HPLC analysis. Myocardial I/R was induced by left anterior descending coronary artery occlusion for 30 minutes followed by 24 hours of reperfusion in rats. AE administration (10, 20, and 40 mg/kg) inhibited I/R-induced injury as indicated by decreasing myocardial infarct size, reducing of CK and LDH activities, and preventing ST-segment depression in dose-dependent manner. AE decreased cardiac tissue levels of proinflammatory factors TNF-α and IL-6 and attenuated leukocytes infiltration. AE was further demonstrated to significantly inhibit I-κB degradation, nuclear translocation of p-65 and phosphorylation of JNK. Our results suggested that cardioprotective effect of AE could be due to suppressing myocardial inflammatory response and blocking NF-κB and JNK activation pathway. Thus, caffeoylquinic acids might be the active compounds in E. multiradiatus on myocardial ischemia and be a potential natural drug for treating myocardial I/R injury

    Cooperative Effects of Zwitterionic–Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy

    No full text
    Cooperative effects of a series of equimolar binary zwitterionic–ionic surfactant mixtures on the interfacial water structure at the air–water interfaces have been studied by sum frequency generation vibrational spectroscopy (SFG-VS). For zwitterionic surfactant palmityl sulfobetaine (SNC<sub>16</sub>), anionic surfactant sodium hexadecyl sulfate (SHS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) with the same length of alkyl chain, significantly enhanced ordering of interfacial water molecules was observed for the zwitterionic–anionic surfactant mixtures SNC<sub>16</sub>–SHS, indicating that SNC<sub>16</sub> interacts more strongly with SHS than with CTAB because of the strong headgroup–headgroup electrostatic attraction for SNC<sub>16</sub>–SHS. Meanwhile, the SFG amplitude ratio of methyl and methylene symmetric stretching modes was used to verify the stronger interaction between SNC<sub>16</sub> and SHS. The conformational order indicator increased from 0.64 for SNC<sub>16</sub> to 7.17 for SNC<sub>16</sub>–SHS but only 0.94 for SNC<sub>16</sub>–CTAB. In addition, another anionic surfactant sodium dodecyl sulfate (SDS) was introduced to study the influence of chain–chain interaction. Decreased SFG amplitude of interfacial water molecules for SNC<sub>16</sub>–SDS was observed. Therefore, both the headgroup–headgroup electrostatic interaction and chain–chain van der Waals attractive interaction of the surfactants play an important role in enhancing the ordering of interfacial water molecules. The results provided experimental and theoretical bases for practical applications of the surfactants

    Salivary microbiome and metabolome analysis of severe early childhood caries

    No full text
    Abstract Background Severe early childhood caries (SECC) is an inflammatory disease with complex pathology. Although changes in the oral microbiota and metabolic profile of patients with SECC have been identified, the salivary metabolites and the relationship between oral bacteria and biochemical metabolism remains unclear. We aimed to analyse alterations in the salivary microbiome and metabolome of children with SECC as well as their correlations. Accordingly, we aimed to explore potential salivary biomarkers in order to gain further insight into the pathophysiology of dental caries. Methods We collected 120 saliva samples from 30 children with SECC and 30 children without caries. The microbial community was identified through 16S ribosomal RNA (rRNA) gene high-throughput sequencing. Additionally, we conducted non-targeted metabolomic analysis through ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry to determine the relative metabolite levels and their correlation with the clinical caries status. Results There was a significant between-group difference in 8 phyla and 32 genera in the microbiome. Further, metabolomic and enrichment analyses revealed significantly altered 32 salivary metabolites in children with dental caries, which involved pathways such as amino acid metabolism, pyrimidine metabolism, purine metabolism, ATP-binding cassette transporters, and cyclic adenosine monophosphate signalling pathway. Moreover, four in vivo differential metabolites (2-benzylmalate, epinephrine, 2-formaminobenzoylacetate, and 3-Indoleacrylic acid) might be jointly applied as biomarkers (area under the curve = 0.734). Furthermore, the caries status was correlated with microorganisms and metabolites. Additionally, Spearman's correlation analysis of differential microorganisms and metabolites revealed that Veillonella, Staphylococcus, Neisseria, and Porphyromonas were closely associated with differential metabolites. Conclusion This study identified different microbial communities and metabolic profiles in saliva, which may be closely related to caries status. Our findings could inform future strategies for personalized caries prevention, detection, and treatment
    corecore