57 research outputs found

    A Context Awareness Hierarchical Attention Network for Next POI Recommendation in IoT Environment

    No full text
    The rapid increase in the number of sensors in the Internet of things (IoT) environment has resulted in the continuous generation of massive and rich data in Location-Based Social Networks (LBSN). In LBSN, the next point-of-interest (POI) recommendation has become an important task, which provides the best POI recommendation according to the userā€™s recent check-in sequences. However, all existing methods for the next POI recommendation only focus on modeling the correlation between POIs based on usersā€™ check-in sequences but ignore the significant fact that the next POI recommendation is a time-subtle recommendation task. In view of the fact that the attention mechanism does not comprehensively consider the influence of the userā€™s trajectory sequences, time information, social relations and geographic information of Point-of-Interest (POI) in the next POI recommendation field, a Context Geographical-Temporal-Social Awareness Hierarchical Attention Network (CGTS-HAN) model is proposed. The model extracts context information from the userā€™s trajectory sequences and designs a Geographical-Temporal-Social attention network and a common attention network for learning dynamic user preferences. In particular, a bidirectional LSTM model is used to capture the temporal influence between POIs in a userā€™s check-in trajectory. Moreover, In the context interaction layer, a feedforward neural network is introduced to capture the interaction between users and context information, which can connect multiple context factors with users. Then an embedded layer is added after the interaction layer, and three types of vectors are established for each POI to represent its sign-in trend so as to solve the heterogeneity problem between context factors. Finally reconstructs the objective function and learns model parameters through a negative sampling algorithm. The experimental results on Foursquare and Yelp real datasets show that the AUC, precision and recall of CGTS-HAN are better than the comparison models, which proves the effectiveness and superiority of CGTS-HAN

    Simultaneous Ultrasound and Heat Enhance Functional Properties of Glycosylated Lactoferrin

    No full text
    Protein-polysaccharide covalent complexes exhibit better physicochemical and functional properties than single protein or polysaccharide. To promote the formation of the covalent complex from lactoferrin (LF) and beet pectin (BP), we enhanced the Maillard reaction between LF and BP by using an ultrasound-assisted treatment and studied the structure and functional properties of the resulting product. The reaction conditions were optimized by an orthogonal experimental design, and the highest grafting degree of 55.36% was obtained by ultrasonic treatment at 300 W for 20 min and at LF concentration of 20 g/L and BP concentration of 9 g/L. The formation of LF-BP conjugates was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy. Ultrasound-assisted treatment can increase the surface hydrophobicity, browning index, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radicals scavenging activity of LF due to the changes in the spatial configuration and formation of Maillard reaction products. The thermal stability, antioxidant activity and emulsifying property of LF were significantly improved after combining with BP. These findings reveal the potential application of modified proteins by ultrasonic and heat treatment

    Comparison and evaluation of L. reuteri and L. rhamnosus-fermented egg yolk on the physicochemical and flavor properties of cookies

    No full text
    The study aims to explore an effective approach to improve the sensory quality and consumer satisfaction of cookies in the food industry. L. reuteri and L. rhamnosus were chosen to ferment egg yolk and their effects on dough properties and physicochemical properties, flavor, texture, color, and sensory acceptability of cookies were studied. Results show that the utilization of fermented egg yolk significantly decreased baking loss and increased spread factor of cookies. GCā€“MS analysis indicates different Lactobacillus species enhanced cookie flavor through unique mechanisms. Texture analysis shows cookies prepared with L. rhamnosus-fermented egg yolk had significantly lower hardness (1807.12Ā g) than control cookies (2028.34Ā g). Sensory evaluation reveals the L. reuteri-fermented egg yolk significantly improved the overall acceptability of cookies by enhancing appearance, flavor, and mouthfeel scores. These findings have practical implications for food manufacturers seeking to enhance their product's quality and appeal, thereby gaining a competitive edge in the market

    Simultaneously Improved Thermal and Dielectric Performance of Epoxy Composites Containing Ti3C2Tx Platelet Fillers

    No full text
    Polymer composites with enhanced thermal and dielectric properties can be widely used in electric and energy related applications. In this work, epoxy composites have been prepared with Ti3C2Tx, one of the most studied MXene materials that can be massively produced by direct etching using hydrofluoric acid. The addition of conductive two dimensional Ti3C2Tx platelet fillers leads to improved but anisotropic thermal conductivity of the composites. The through-plane thermal conductivity reaches 0.583 Wm−1K−1 and the in-plane thermal conductivity reaches 1.29 Wm−1K−1 when filler content is 40 wt% (21.3 vol%), achieving enhancements of 2.92 times and 10.65 times respectively, as compared with epoxy matrix. The dielectric permittivity of epoxy composite is enhanced by a factor of ~2.25 with 40 wt% fillers, and the dielectric losses are within a small value of 0.02. The results prove the effectiveness of Ti3C2Tx in simultaneously improving thermal and dielectric performance of epoxy composites, and it is deduced that further improvements may be obtained by using Ti3C2Tx nanoflake fillers

    The Geochemistry and Bioturbation of Clay Sediments Associated with Amalgamated Crusts at the Gagua Ridge

    No full text
    Based on the analysis of geochemical and mineralogical compositions, deep sea clay sediment characteristics and their material sources were examined in the eastern flank of the Gagua Ridge. The mineralogy mainly consists of detrital clay minerals, quartz, and authigenic phillipsite. There is scarce biogenic debris (siliceous or calcareous). The consolidated sediments are more enriched in Si, Al, K, Na, Li, Sc, Cr, Rb, and Cs than the associated crusts and nodules. The unmixed sediment samples were mainlycontributed by Asian eolian dust. The onset of the outer Fe-Mn crust growth nearly coincides with the Central Asia aridification event at ~3.5 Ma, which resulted in an abrupt increase in eolian flux of Asian dust. Intensified surface primary productivity is assumed to bring more metals to deep waters, and eventually facilitate the outer Fe-Mn crust formation. Authigenic phillipsite may come from the alteration of local basic volcanic glasses and cause excess Al, high Al/Ti, and low Si/Al ratios. However, phillipsites hardly affect the abundance of rare earth elements (REEs) and their patterns. In addition, the investigation of two kinds of burrows inside the consolidated sediments reveals that the inner nodules of the amalgamated crusts may remain on the oxic sediment surface, due to frequent benthic activities
    • ā€¦
    corecore