33 research outputs found

    Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures

    Get PDF
    This paper presents a finite element (FE) model developed using commercial FE software COMSOL to simulate the multiphysical process of pieozoelectric vibration energy harvesting (PVEH), involving the dynamic mechanical and electrical behaviours of piezoelectric macro fibre composite (MFC) on carbon fibre composite structures. The integration of MFC enables energy harvesting, sensing and actuation capabilities, with applications found in aerospace, automotive and renewable energy. There is an existing gap in the literature on modelling the dynamic response of PVEH in relation to real-world vibration data. Most simulations were either semi-analytical MATLAB models that are geometry unspecific, or basic FE simulations limited to sinusoidal analysis. However, the use of representative environment vibration data is crucial to predict practical behaviour for industrial development. Piezoelectric device physics involving solid mechanics and electrostatics were combined with electrical circuit defined in this FE model. The structure was dynamically excited by interpolated vibration data files, while orthotropic material properties for MFC and carbon fibre composite were individually defined for accuracy. The simulation results were validated by experiments with <10ļ¹Ŗ deviation, providing confidence for the proposed multiphysical FE model to design and optimise PVEH smart composite structures

    A Numerical Feasibility Study of Kinetic Energy Harvesting from Lower Limb Prosthetics

    Get PDF
    With the advancement trend of lower limb prosthetics headed towards bionics (active ankle and knee) and smart prosthetics (gait and condition monitoring), there is an increasing integration of various sensors (micro-electromechanical system (MEMS) accelerometers, gyroscopes, magnetometers, strain gauges, pressure sensors, etc.), microcontrollers and wireless systems, and power drives including motors and actuators. All of these active elements require electrical power. However, inclusion of a heavy and bulky battery risks to undo the lightweight advancements achieved by the strong and flexible composite materials in the past decades. Kinetic energy harvesting holds the promise to recharge a small on-board battery in order to sustain the active systems without sacrificing weight and size. However, careful design is required in order not to over-burden the user from parasitic effects. This paper presents a feasibility study using measured gait data and numerical simulation in order to predict the available recoverable power. The numerical simulations suggest that, depending on the axis, up to 10s mW average electrical power is recoverable for a walking gait and up to 100s mW average electrical power is achievable during a running gait. This takes into account parasitic losses and only capturing a fraction of the gait cycle to not adversely burden the user. The predicted recoverable power levels are ample to self-sustain wireless communication and smart sensing functionalities to support smart prosthetics, as well as extend the battery life for active actuators in bionic systems. The results here serve as a theoretical foundation to design and develop towards regenerative smart bionic prosthetics

    Genomics-based plant germplasm research (GPGR)

    No full text
    Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR) or ā€œGenoplasmicsā€ is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted

    Research on Workshop-Based Positioning Technology Based on Internet of Things in Big Data Background

    No full text
    This paper first analyzes the data collection and data management of the workshop, obtains the data of the workshop changes with time, and accumulates the data. There are bottleneck problems such as big data being difficult to be fully used. Then, the concept of the Internet of Things was introduced into the workshop positioning to realize the comprehensive use of the big data in the workshop. Finally, aiming at the positioning problem of manufacturing workshop items, the ZigBee positioning algorithm, the received signal strength indication algorithm RSSI and the trilateration algorithm, is applied, and the trilateral positioning algorithm is applied to the CC2430 wireless MCU, and the positioning node is designed and implemented. The three-sided localization algorithm was used to locate and simulate the horizontal and vertical comparisons of six groups of workshop terminals. The results showed that the difference between the simulated position and the actual position did not exceed 1m, which was in line with the positioning requirements of the workshop

    Seroprevalance of antibodies specific for severe fever with thrombocytopenia syndrome virus and the discovery of asymptomatic infections in Henan Province, China.

    No full text
    BackgroundSevere fever with thrombocytopenia syndrome (SFTS) is a severe emerging disease caused by SFTS virus (SFTSV), and the geographical distribution of SFTS has been increasing throughout China in recent years. To assess SFTSV-specific antibody seroprevalence, a cross-sectional study was conducted for healthy people in high SFTS endemic areas of Henan province in 2016.MethodsThis study used a stratified random sampling method to select 14 natural villages as the investigation sites. From April to May 2016, participants completed a questionnaire survey and serum samples were collected. All serum samples were subjected to ELISA to detect SFTSV-specific IgM and IgG. All IgM-positive samples were further tested by real-time RT-PCR, and isolation of virus from serum was attempted. Any participant who was IgM-positive was followed up with a month later to confirm health status.ResultsIn total, 1463 healthy people participated in this study. The average seropositive rates for SFTSV-specific IgG and IgM were 10.46% (153/1463) and 0.82% (12/1463), respectively. IgM was detected in 12 individuals, and SFTSV RNA was detected in six of them. Virus was isolated from five of the six SFTSV RNA-positive individuals, and phylogenetic analyses revealed that all five isolates belonged to SFTSV group A. No IgM-positive participants exhibited any symptoms or other signs of illness at the one-month follow up.ConclusionsThis study identified a relatively high incidence of SFTSV-specific antibody seropositivity in healthy people in Xinyang city. Moreover, our data provide the first evidence for asymptomatic SFTSV infections, which may have significant implications for SFTS outbreak control

    Lateral hypothalamic orexin neurons mediate electroacupuncture-induced anxiolytic effects in a rat model of post-traumatic stress disorder

    No full text
    The lateral hypothalamus' orexinergic system has been associated with anxiety-related behaviors, and electroacupuncture (EA) modifies orexin neurons to control the anti-anxiety process. However, in a rat model of post-traumatic stress disorder (PTSD), the important role of LH orexin neurons (OXNs) in the anxiolytic effects induced by EA has not been explored. In this study, rats underwent modified single prolonged stress (MSPS) for seven days before developing EA. The rats were then subjected to elevated plus maze (EPM) and open field (OFT) tests, and western blot and c-Fos/orexin double labeling investigations were carried out to determine the functional activation of LH orexinergic neurons. Compared to MSPS model rats, it has been demonstrated that EA stimulation enhanced the amount of time spent in the central zone (TSCZ) in OFT and the amount of time spent in the open arm (TSOA) in EPM in MSPS model rats (PĀ <Ā 0.01). After behavioral testing, MSPS model rats had decreased activated c-Fos positive OXNs. Still, EA in SPS rats increased that number and elevated orexin type 1 receptors (OXR1) protein expression in the LH. Furthermore, after administering SB334867 (an OXR1 antagonist) to MSPS model rats, the effects of EA therapy on anxiety-like behaviors (ALBs) were significantly diminished. Additionally, when low-dose orexin-A (LORXA) was administered intracerebroventricularly together with EA stimulation in MSPS rats, the anxiolytic effects of the stimulation were substantially enhanced (PĀ <Ā 0.05). The results of this study reveal the mechanisms by which acupuncture may reduce PTSD and advance our understanding of the function of LH orexin signaling in EA's anxiolytic effects

    The evolutionary history and spatiotemporal dynamics of the fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV) in China.

    No full text
    In 2007, a novel bunyavirus was found in Henan Province, China and named fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV); since then, FTLSV has been found in ticks and animals in many Chinese provinces. Human-to-human transmission has been documented, indicating that FTLSV should be considered a potential public health threat. Determining the historical spread of FTLSV could help curtail its spread and prevent future movement of this virus.To examine the pattern of FTLSV evolution and the origin of outbreak strains, as well to examine the rate of evolution, the genome of 12 FTLSV strains were sequenced and a phylogenetic and Bayesian phylogeographic analysis of all available FTLSV sequences in China were performed. Analysis based on the FTLSV L segment suggests that the virus likely originated somewhere in Huaiyangshan circa 1790 (95% highest probability density interval: 1756-1817) and began spreading around 1806 (95% highest probability density interval: 1773-1834). Analysis also indicates that when FTLSV arrived in Jiangsu province from Huaiyangshan, Jiangsu Province became another source for the spread of the disease. Bayesian factor test analysis identified three major transmission routes: Huaiyangshan to Jiangsu, Jiangsu to Liaoning, and Jiangsu to Shandong. The speed of FTLSV movement has increased in recent decades, likely facilitated by modern human activity and ecosystem changes. In addition, evidence of RNA segment reassortment was found in FTLSV; purifying selection appears to have been the dominant force in the evolution of this virus.Results presented in the manuscript suggest that the Huaiyangshan area is likely be the origin of FTLSV in China and identified probable viral migration routes. These results provide new insights into the origin and spread of FTLSV in China, and provide a foundation for future virological surveillance and control
    corecore