457 research outputs found

    catena-Poly[[bis­(nitrato-κ2 O,O′)cobalt(II)]-μ-4,4′-bis­(pyrazol-1-ylmeth­yl)biphenyl-κ2 N 2:N 2′]

    Get PDF
    In the title compound, [Co(NO3)2(C20H18N4)]n, the CoII atom lies on a crystallographic twofold axis and the coordination geometry can be considered as a slightly distorted tetra­hedron defined by two O atoms from two nitrate groups and two N atoms from two ligand mol­ecules. A distorted octa­hedron may be assumed when two of the symmetry-related nitrate O atoms with Co—O distances of 2.3449 (19) Å are added to the coordination environment. Another twofold axis, passing through the middle of the biphenyl bonds, is observed in the crystal structure. A chain is built up by the ligands linking the CoII ions along [101]

    CodeScore: Evaluating Code Generation by Learning Code Execution

    Full text link
    A proper code evaluation metric (CEM) profoundly impacts the evolution of code generation, which is an important research field in NLP and software engineering. Prevailing CEMs can be categorized into match-based CEMs (e.g., BLEU, Accuracy, and CodeBLEU) and execution-based CEMs (e.g., AvgPassRatio and Pass@k), but both of them suffer from some issues. The former only measures differences in surface form regardless of the functional equivalence of codes, while the latter has huge execution overheads, including collecting expensive test cases, resolving tedious execution dependencies, and enormous execution time. To address these issues, in this paper, we propose CodeScore, an efficient and effective CEM for code generation, which estimates test case PassRatio of generated code without executing code. We also present a framework named UniCE for training unified code evaluation models by learning code execution, i.e., learning PassRatio and Executability of generated code. In order to learn code execution comprehensively, we construct more than 100 test cases for each task in several popular benchmark datasets, covering MBPP, APPS, and HumanEval. Experimental results show that CodeScore has obtained a state-of-the-art correlation with execution-based CEMs. CodeScore is strongly correlated with AvgPassPatio, and binary CodeScore is moderately correlated with Pass@1. In particular, CodeScore eliminates the need for test cases and execution dependencies in inference, and CodeScore reduces execution time by three orders of magnitude compared to AvgPassPatio and Pass@1

    Multiconsensus of Second-Order Multiagent Systems with Input Delays

    Get PDF
    The multiconsensus problem of double-integrator dynamic multiagent systems has been investigated. Firstly, the dynamic multiconsensus, the static multiconsensus, and the periodic multiconsensus are considered as three cases of multiconsensus, respectively, in which the final multiconsensus convergence states are established by using matrix analysis. Secondly, as for the multiagent system with input delays, the maximal allowable upper bound of the delays is obtained by employing Hopf bifurcation of delayed networks theory. Finally, simulation results are presented to verify the theoretical analysis

    catena-Poly[[bis­(nitrato-κ2 O,O′)zinc(II)]-μ-4,4′-bis­(pyrazol-1-ylmeth­yl)biphenyl-κ2 N 2:N 2′]

    Get PDF
    In the title compound, [Zn(NO3)2(C20H18N4)]n, the ZnII atom lies on a crystallographic twofold axis and the coordination geometry can be considered as a slightly distorted tetra­hedron defined by two O atoms from two nitrate groups and two N atoms from two ligand mol­ecules. A distorted octa­hedron may be assumed when two of the symmetry-related nitrate O atoms, with Zn—O distances of 2.528 (2) Å, are added to the coordination environment. Another twofold axis, passing through the middle of the biphenyl bonds, is observed in the crystal structure. A chain along [101] is built up by the ligands linking the ZnII ions

    Modular co-evolution of metabolic networks

    Get PDF
    The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear. In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens) metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.Comment: 26 pages, 7 figure

    GSK-3β regulates tumor growth and angiogenesis in human glioma cells.

    Get PDF
    BACKGROUND: Glioma accounts for the majority of primary malignant brain tumors in adults. METHODS: Glioma specimens and normal brain tissues were analyzed for the expression levels of GSK-3β and p-GSK-3β (Ser9) by tissue microarray analysis (TMA) and Western blotting. Glioma cells over-expressing GSK-3β were used to analyze biological functions both in vitro and in vivo. RESULTS: The levels of p-GSK-3β (Ser9), but not total GSK-3β, are significantly up-regulated in glioma tissues compared to normal tissues, and are significantly correlated with the glioma grades. Ectopic expression of GSK-3β decreased the phosphorylation levels of mTOR and p70S6K1; and inhibited β-catenin, HIF-1α and VEGF expression. Forced expression of GSK-3β in glioma cells significantly inhibited both tumor growth and angiogenesis in vivo. CONCLUSIONS: These results reveal that GSK-3β regulates mTOR/p70S6K1 signaling pathway and inhibits glioma progression in vivo; its inactivation via p-GSK-3β (Ser9) is associated with glioma development, which is new mechanism that may be helpful in developing GSK-3β-based treatment of glioma in the future
    corecore