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Abstract

The attachment of rumen microbes to feed particles is critical to feed fermentation, degradation and digestion. 

However, the extent to which the physicochemical properties of feeds influence the colonization by rumen microbes 

is still unclear. We hypothesized that rumen microbial communities may have differential preferences for attachments 

to feeds with varying lignocellulose properties. To this end, the structure and composition of microbial communities 

attached to six common forages with different lignocellulosic compositions were analyzed following in situ rumen 

incubation in male Taleshi cattle. The results showed that differences in lignocellulosic compositions significantly 

affected the inter-sample diversity of forage-attached microbial communities in the first 24 hours (h) of rumen 

incubation, during which the highest dry matter degradation was achieved. However, extension of the incubation to 

96 h resulted in the development of more uniform microbial communities across the forages. Fibrobacteres were 

significantly overrepresented in the bacterial communities attached to the forages with the highest neutral detergent 

fiber contents. Ruminococcus tended to attach to the forages with low acid detergent lignin contents. The extent of dry 

matter fermentation was significantly correlated with the populations of Fibrobacteraceae, unclassified Bacteroidales, 

Ruminococcaceae and Spirochaetacea. Our findings suggested that lignocellulosic compositions, more specifically 

the cellulose components, significantly affected the microbial attachment to and thus the final digestion of the forages.

Keywords: microbiome, microbiota, rumen, rumen incubation, 16S rRNA gene sequencing, rumen fermentation, 

biomass degradation
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Introduction

The gastrointestinal tracts (GIT) of ruminant animals have evolved to allow the colonization by a diverse community 

of symbiotic microorganisms belonging to three taxonomic domains of life, i.e. Archaea, Bacteria and Eukarya. 

Particularly, as the first and the largest compartment of ruminant stomach, rumen is the main site of microbial 

colonization and fermentation. Without the aid of such microorganisms, the host ruminants cannot digest and convert 

plant lignocellulosic biomasses into energy and other essential metabolites (Jami and Mizrahi 2012; Mackie 2002). It 

is estimated that almost 70% of the energy requirement of ruminants is supplied by this microbial fermentation 

(Bergman 1990). In addition to their crucial role in animal nutrition and production, the GIT microorganisms remain 

vital to animal health, physiology and immunity against pathogenic microbes (Guarner and Malagelada 2003; Hungate 

2013).

Bacteria are the major colonizers in the rumen and consequently make the greatest contribution to plant biomass 

fermentation, degradation and digestion. Early studies on rumen microbial communities relied largely on culture-

based approaches, which were limited to the bacteria that can grow on culture medium. With the advances in next-

generation sequencing technologies, culture-independent approaches have gained preference, enabling researchers to 

achieve a deeper insight into precise composition and structure of rumen bacterial communities. The latest high 

throughput amplicon-based 16S ribosomal RNA gene (rRNA) sequencing studies suggest that rumen bacterial 

communities of most ruminants are mainly affiliated to the phyla of Bacteroidetes, Firmicutes, Proteobacteria, 

Fibrobacteres, Spirocheaetes, Actinobacteria, Tenericutes and Verrucomicrobia, which collectively account for 

greater than 99% of the total rumen bacterial communities (Godoy-Vitorino et al. 2012; Jami et al. 2013; Jami and 

Mizrahi 2012; Zened et al. 2013). Microbial communities are dynamic in the rumen and depend on the host species 

and its diet, age, physiology and health status (Godoy-Vitorino et al. 2012; Jami et al. 2013; Jami and Mizrahi 2012; 

Kocherginskaya et al. 2001; Kong et al. 2010; Petri et al. 2012). Under normal physiological conditions, diet is the 

major driver to determine the composition and structure of rumen bacterial communities (Petri et al. 2012). 

Interestingly, the amount of dietary fiber is a key factor shaping the growth and multiplication of cellulolytic bacteria 

in the rumen. Changing dietary fiber content or substituting the fiber with easily fermentable carbohydrates has a 

profound impact on the community of rumen microbiota and may result in metabolic diseases, such as subacute 

ruminal acidosis (Khafipour et al. 2009; Petri et al. 2017).

Members of the rumen bacterial communities differ in their preferences for attachment to feed particles and rumen 

wall, therefore they are accordingly categorized into particle-attached (tightly attached to feed particles), liquid borne 

(freely available in liquid fraction) and epimural (attached to rumen epithelium) communities (De Mulder et al. 2017; 

Gharechahi et al. 2015; Kong et al. 2010; Sadet et al. 2007). The attachment of rumen microbial communities to feed 

particles is a key step in the process of rumen fermentation and digestion (McAllister et al. 1994) and it occurs shortly 

after feed entry into the rumen. Analysis of microbial communities associated with perennial ryegrass following in 

situ rumen incubation in Holstein–Friesian cows or steers shows that microbial attachment initiates within five minutes 

(min) of its rumen entry and stabilizes between 15 and 30 min of its rumen incubation (Edwards et al. 2007; Huws et 
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al. 2013). A recent analysis of temporal changes in bacterial community attached to wheat straw in Holstein cow 

rumen demonstrates that the first wave of microbial-based biomass degradation occurs within 30 min of its rumen 

entry. The community of bacteria attached to feed particles during this time retains even after 72 hours (h) of the 

rumen incubation (Jin et al. 2018). The degree of dry matter (DM) degradation differs among forages during the initial 

hours of their rumen entry (Cheng et al. 2017; Liu et al. 2016). The community composition of particle-attached 

microbes also varies among feeds and is likely influenced by the chemical compositions of feeds because cellulolytic 

bacteria such as Fibrobacter, Ruminocuccus, Butyrivibrio and unclassified Treponema tend to attach to feeds with 

relatively high neutral detergent fiber (NDF, Cheng et al. 2017; Liu et al. 2016). The community of feed particle-

attached bacteria also changes over the incubation time. For instance, rumen microbiota attachment to switchgrass in 

Friesian cow occurs at two successive stages: The first wave takes place immediately after its rumen entry (within the 

first 30 min) and is characterized by high abundances of Bacteroidia and Clostridia. The second wave, however, occurs 

after 16 h of its rumen incubation, during which the populations of Spirochaeta and Fibrobacteria become dominant 

(Piao et al. (2014).

There is limited knowledge on rumen bacteria diversity, their preference for attachment to and degradation of feeds 

with extreme values of cellulose and/or hemicellulose. Understanding the dynamics of bacteria attached to feeds at 

high level of lignification provides opportunities to improve the nutrient efficiency of low-quality forages through 

pre-treatments or manipulation of rumen microbial communities. We hypothesized that rumen bacterial communities 

differ in lignocellulose degrading capacities and thus show preference for attachment to feeds with different levels of 

lignification. We therefore aimed to evaluate whether the rumen microbes have any preference for attachment to 

forages with different cellulose and/or hemicellulose contents. We also explored the dynamic changes in microbial 

communities attached to the forages under prolonged incubation in the cattle rumen (e.g. up to 96 h with 24 h sampling 

intervals). Overall, our 16S rRNA genes-based diversity analysis revealed significant differences in the composition 

and structure of microbial communities attached to different forages.

Materials and methods

In situ rumen incubation and sample collection of the forages

All experimental procedures relevant to animals were approved by the Ethics Committee for Animal Experiments of 

the Animal Science Research Institute of Iran. Rumen cannulation was performed according to the American College 

of Veterinary Surgeons (ACVS) using a two-stage rumen cannulation technique (Martineau et al. 2015).

Six common lignocellulosic forages, including camelthorn (Alhagi persarum, AP; both stem and leaves), common 

reed (Phragmites australis, CR; stem and leaves), date palm (Phoenix dactylifera, DP; leaves), kochia (Kochia 

scoparia, KS; both stem and leaves), rice straw (Oryza sativa; cultivar Hashemi, RS; both stem and leaves) and 

salicornia (Salicornia persica, SC; both stem and leaves), were selected for in situ rumen incubation. Dried forage 

materials were cut into pieces of approximately 2 mm in length and an equal amount of the pieces (5 ± 0.05 g) was 

weighed into heat-sealed nylon bags (5 × 10 cm; 50 μm pore size). Three rumen-cannulated, purebred bulls (Taleshi 
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cattle, an Iranian local breed with a historical origin of Bos taurus mixed with Bos indicus) aged between 2.5 and 3 

years were used for this study. Forty-eight heat-sealed bags, eight per forage, were simultaneously placed into each of 

the three rumens shortly after the cannulated bulls were offered the first meal in the morning. The bulls were housed 

together in a stable, fed on a mixed diet containing 70% wheat straw and 30% concentrate and provided free access 

to water. Two nylon bags from each of the six forages were retrieved from each rumen after 24, 48, 72 and 96 h of the 

incubation, washed thoroughly with distilled water three times to remove liquid borne and loosely attached microbes, 

which may not have a discriminating preference for attachment to forages with different lignocellulose properties, and 

finally squeezed by hands with sterile gloves to remove excess water. The bags were then transferred in liquid nitrogen 

to the laboratory where one replicate was stored at -70 °C for subsequent DNA extraction while the other was 

processed for physicochemical analysis.

Physicochemical analysis of the incubated forage materials

The forage lignocellulosic biomasses were analyzed for dry matter (DM) and the contents of neutral detergent fiber 

(NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) before and after the rumen incubation. DM was 

determined following 48 h air-drying of the samples in a fan-assisted oven maintained at 55 °C. The dried material 

was grounded to pass through a 1-mm sieve for the measurements of NDF, ADF and ADL according to the established 

procedures (Goering 1970; Van Soest et al. 1991). Cellulose content was estimated by subtracting ADL from ADF 

while hemicellulose content was measured by subtracting ADF from NDF.

Microbial cell recovery and metagenomic DNA extraction

Microbial cells firmly attached to the forages were subsequently stripped by incubating individual samples on ice in 

a dissociation buffer containing 0.1% (v/v) Tween 80, 1% (v/v) methanol and 1% (v/v) tertiary butanol (adjusted at 

pH 2), which has been particularly adapted for the dissociation of microbial cells from the rumen solid digesta. The 

samples were vigorously vortexed every 1 min and this step was repeated at least 5 times. The forage materials were 

sedimented by centrifugation at 500  g and the liquid supernatant containing microbial cells was transferred to a new 

container. This step was repeated at least three times and the collected liquids were centrifuged at 12000  g for 10 

min to sediment the detached microbial cells. Metagenomic DNA from the detached cells was extracted using the 

QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol for the isolation 

of DNA from stools for pathogen detection. The quality and quantity of the extracted DNA were evaluated by an 

agarose gel electrophoresis (0.8%) and a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

PCR amplification and Illumina sequencing of 16S rRNA gene

The V3-V4 hypervariable region of 16S rRNA gene was amplified using the universally conserved primer set S-D-

Bact-0341-b-S-17 (5′-CCT ACG GGN GGC WGC AG-3′) and S-D-Bact-0785-a-A-21 (5′-GAC TAC HVG GGT 

ATC TAA TCC-3′), which generated a fragment of 464 bp suitable for paired-end sequencing using the Illumina 

MiSeq System (Illumina Inc. San Diego, CA, USA). PCR amplification was performed in triplicate in a 25 L reaction 
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containing 12.5 L 2 PCR master mix (Qiagen), 1 L (10 pM) of each primer, 30 ng of microbial DNA and 5-9 L 

of double-distilled water. The PCR condition consisted of an initial denaturation at 94 °C for 4 min followed by 30 

cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and a final extension at 72 °C for 5 min. PCR products 

were purified and 2 L of each reaction was used as a template for the second round of PCR, during which the Illumina 

adaptors and barcode sequences were incorporated to the 5’-end of the amplified products. The second PCR was also 

performed in triplicate under the same running condition except the number of cycles were limited to 15. The PCR 

amplicons were recovered using the Qiaquick® Gel Extraction Kit (Qiagen), quantified fluorometrically, pooled in 

equimolar quantities and paired-end sequenced (PE300) using the Illumina MiSeq System at Macrogen Inc. (Seoul, 

South Korea).

Sequence analysis

Quality filtered paired-end sequences were joined using the Flash with --max-overlap option set to 200 (Magoc and 

Salzberg 2011). Sequences failed to be assembled were discarded. The joined FASTQ files were processed using 

split_libraries_fastq.py script in the QIIME pipeline v1.9.1 (Caporaso et al. 2010b). This script demultiplexed 

sequences and filtered out sequences shorter than 200 bp or longer than 1000 bp, along with those containing 

ambiguous bases with a mean quality score < 20, having runs of six or more of the same nucleotides, carrying a 

missing quality score and including > two mismatches from the primer sequences. The multiplexed sequences were 

searched against the latest Ribosomal Database Project (RDP release 11.5, containing 3,356,809 16S rRNA sequences) 

to identify and discard chimeric sequences using the VSEARCH v2.8.3 operated under default setting (Rognes et al. 

2016). Non-chimeric sequences were then used to pick operational taxonomic units (OTUs) using the 

pick_de_novo_otus.py script in the QIIME pipeline as described in details in our previous paper (Gharechahi et al. 

2017). OTUs were defined at 97% identity using the Uclust (Edgar 2010). The most abundant sequence in each OTU 

cluster was selected as being a representative; and these sequences were then aligned against the Greengenes core set 

(gg_13_8; (DeSantis et al. 2006)) using the PyNAST aligner with a minimum sequence identity of 75% (Caporaso et 

al. 2010a). Taxonomies were assigned to each OTU using the Ribosomal Database Project naïve Bayesian classifier 

(Wang et al. 2007) by applying a minimum confidence value of 0.8. The OTU table was filtered for low abundant 

OTUs using the filter_otus_from_otu_table.py script with --min_count_fraction option set to 0.00001 (discarding 

OTUs represented by < 0.001% of the sequences) and then rarefied to the sequencing depth at 4660 reads 

corresponding to the number of reads in the sample with the smallest set of sequences. Rarefaction plots and alpha 

diversity indices, including Shannon, Simpson, Good’s_coverage and Chao1, were calculated using the 

core_diversity_analyses.py script in the QIIME pipeline. Beta diversity indices, including weighted and unweighted 

Unifrac phylogenetic distance matrices, were constructed with the rarefied OTU table as input and visualized through 

the principal coordinate analysis (PCoA) plots in the MicrobiomeAnalyst web server (Dhariwal et al. 2017).

Statistical analysis
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Statistically significant differences in physicochemical data, including DM, NDF, ADF, ADL, cellulose and 

hemicellulose contents, were analyzed by one-way ANOVA using the general linear model (GLM) procedure in the 

SAS software v9.3 (SAS Institute Inc., Cary, NC, USA). Permutational multivariate analysis of variance 

(PERMANOVA) was performed using the adonis function of R-package vegan v2.5-5 to test for significant 

differences between community compositions of forage-attached microbial communities. In addition, permutation 

multivariate analysis of group dispersions (PERMDISP) based on the betadisper function of the vegan was used to 

test for the homogeneity of dispersions (variances). Differences in taxa abundances among forages and sampling 

intervals were estimated using analysis of composition of microbes (ANCOM) based on relative abundances of OTUs 

summarized at various taxonomic levels (Mandal et al. 2015). Means were compared by Duncan's Multiple Range 

test (DMRT) in PAST v3.26 given Bonferroni p-value cutoff < 0.05 (Hammer et al. 2001). Error correction was done 

based on the number of groupwise comparisons performed at each taxonomic level. The Pearson’s correlation analysis 

was performed using the corr.test function of the psych package v1.8.12 and p-values were corrected using Bonferroni 

method based on the total number of correlations calculated for each variable separately. For all tests, p-values less 

than 0.05 were considered statistically significant.

Results

Physicochemical properties of the rumen-incubated forages

The six forages were analyzed for the contents of NDF, ADF, ADL, cellulose and hemicellulose before their rumen 

incubation (Figure 1). They showed different NDF contents (p < 0.05), being the highest in common reed (CR) but 

the lowest in both camelthorn (AP) and rice straw (RS). Most of them also contained different ADF contents (p < 

0.05), being the highest in AP but the lowest in both RS and salicornia (SC). The contents of ADL also differed 

significantly between the forages (p < 0.05), with AP being the highest at 2 times that in date palm (DP), three times 

those in SC, CR and kochia (KS; the latter two with similar contents at p > 0.05) and 6 times the lowest value in RS 

(24.86% vs 4.06%). CR carried the highest cellulose followed by DP, RS, KS and SC while AP contained the lowest 

cellulose (p < 0.05). SC possessed the highest amount of hemicellulose followed by CR, KS, RS, DP and AP. Overall, 

all the six forages had different physicochemical properties in terms of their relative contents of hemicellulose, 

cellulose and lignin.

Lignocellulosic biomass degradation following the rumen incubation

The six forages were monitored for their changes in the contents of DM, NDF, ADF, ADL, cellulose and hemicellulose 

during the rumen incubation (Figure 1 and Figure S1). DM degradation was the fastest in AP but the slowest in CR 

(42% vs 34%, p < 0.05) during the first 24 h of the incubation. DM degradation was completed in AP at 24 h but 

continued in CR and KS until 48 h, and in DP, RS and SC up to 96 h of the incubation, with RS having the highest 

degraded DM (66%) followed by SC (56%) and DP (53%). AP, DP and KS demonstrated similar trends of 

significantly increased NDF, ADF, ADL and cellulose contents (p < 0.05), mirrored in their patterns of DM 

degradations, mostly within the first 24 h, but their hemicelluloses decreased continuously (p < 0.05 in most cases) 
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following the incubation. However, the patterns of these five fiber-related parameters were significantly segregated 

among CR, RS and SC during the incubation. Although ADF and ADL were significantly increased but celluloses 

were remarkably declined in CR and SC (p < 0.05), their NDF and hemicelluloses showed contrasting patterns, being 

significantly reduced in CR while steadily accumulated in SC (p < 0.05) throughout the incubation. ADF, cellulose 

and hemicellulose in RS maintained stable levels while its NDF and ADL were slightly increased (p < 0.05) along the 

incubation. It was apparent that the initial differences in fiber-related physicochemical properties significantly affected 

the rumen digestion of the six forages.

16S rRNA gene sequencing

The paired-end sequencing of PCR amplicons from the V3-V4 region of 16S rRNA gene resulted in 5,945,300 pairs 

of raw sequences (averaged at 82,573 sequences per sample) with an average length of 300 bp. Sequences were joined 

into 4,421,604 full-length amplicons at an average of 61,411  38,275 per sample. The uneven sequencing depths 

across samples may be due to the true differences in microbial abundance of samples or the technical variations 

introduced during library preparation and sequencing. Although the numbers of sequences varied greatly among the 

forages and across the lengths of the rumen incubation, there was a general pattern of a steady increase from the lowest 

at 24 h (averaged at 44,100 per sample) to the highest at 72 h (averaged at 95,823 per sample).

Sequencing data analysis

Before processing the amplicon sequences for OTU picking, they were subjected to a single round of quality filtering, 

resulting in 3,602,510 high quality sequences, of which 994,147 (27%) were identified to be chimeric and thus 

discarded from further analyses. The qualified sequences (2,493,285) were clustered at 97% similarity level into 

110,804 OTUs, of which 106,982 (96.4%, representing 202,403 sequences) were labeled as low abundant features 

(e.g. those representing reads with frequencies less than 0.001% of the total sequences) and therefore filtered out from 

the OTU table. Finally, 3,822 clean OTUs representing 2,290,882 sequences were subjected to further downstream 

analyses. To assess whether our sequencing effort provided sufficient sequencing depths to describe the diversity of 

forage-attached microbiotaes, rarefaction curves describing the numbers of observed OTUs, species richness (Chao1), 

Shannon and Simpson diversity at various sequencing depths were generated for all samples (Figure S2a-d). 

Rarefaction analysis based on observed species and species richness revealed incomplete sampling of microbiota 

attached to the forages and thus indicated that highly diverse microbial communities attached to the forages with 

different lignocellulose properties(Figure S2a and b). However, Shannon (Figure S2c) and Simpson indices (Figure 

S2d) also showedreached plateaus, indicating that the majority of the diversity was explored that forage-attached 

microbiota had not been evenly sampled.

Microbial diversity analysis

Differences in alpha diversity indices of forage-attached microbiota were mostly limited to the first 24 h of the rumen 

incubation, during which the maximal differences in microbial attachment occurred (Figure S3). At this time, CR and 
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RS (two forages with the highest initial cellulose contents) had the lowest while AP and KS (two forages with the 

lowest initial cellulose contents) had the highest average observed species and species richness. CR and RS also 

showed the lowest average Shannon index, indicating their limited microbial diversity (p < 0.05). Diversity indices in 

almost all forages were not affected by the incubation length (Figure S4) except that CR had very low alpha diversity 

measures at 24 h of its incubation (p < 0.05). All samples showed a high Good’s coverage (> 0.91, data not shown) at 

all sampling intervals, indicating that our sequencing effort figured out > 90% of the microbial diversity attached to 

the forages. However, the uneven sequencing depths did not allow us to fully explore the diversity of forage-attached 

microbiota. Considering potential random errors due to limited numbers of experimental animals and replicates in this 

study, such differences in alpha diversity indices among the forages were not robust enough to be interpreted with any 

biological significance.

Beta diversity analysis also showed limited variations among the forages as well as across the lengths of the rumen 

incubation. Weighted Unifrac dissimilarity matrix, which considered taxa relative abundances and their phylogenetic 

distances, explained 21% and 26% of the variations among the forages and across the lengths of the incubation, 

respectively. PERMANOVA revealed that at least some forages (e.g. CR and SC) had different microbial communities 

(Figure 2a, p < 0.001) while testing for homogeneity of group dispersions (sample distance from group centroid) 

identified no significant difference between group dispersions (Figure 2b, PERMDISP p > 0.1). Nevertheless, 

differences in microbial communities across the incubation lengths (Figure 2c, PERMANOVA p < 0.001) appeared 

to be mainly affected by within-group dispersions, either by the forage types or inter-animal variations, particularly 

during the first 24 h (Figure 2d, PERMDISP p < 0.05). At this time, CR-attached microbiota was well-separated from 

those attached to other forages. The entire microbial community structure showed a clear shift among the forages 

during the incubation because differences in the microbiota were apparent at 24 h but disappeared in later sampling 

intervals (Figure 2c and d). This finding suggested the existence of a strong preference of rumen microbiota for 

attachment to the forages of different digestibility while the rate and extent of such preference were quickly 

compromised after the initial hours of rumen digestion (24 h).

Forage-attached microbial community

A total of 18 bacterial phyla and one archaeal phylum were identified from the forage-attached microbial communities 

colonized in the Taleshi cattle rumen. The communities were dominated by phyla Firmicutes (45%) and Bacteroidetes 

(41%) followed with Fibrobacteres (5%), Spirochaetes (3%) and Proteobacteria (2%). Variations in the abundances 

of major bacterial phyla attached to the forages have been depicted in Figure 3a. The ANCOM analysis followed by 

Duncan’s post hoc test revealed differential abundances of Bacteroidetes, Fibrobacteres, Lentisphaerae and 

Spirochaetes among the forages (Figure 3b, ANCOM p < 0.05). Bacteroidetes were significantly overrepresented in 

AP and CR compared with DP and SC (DMRT Bonferroni p < 0.001). Interestingly, fiber-utilizing bacteria belonging 

to Fibrobacteres were observed in more than 9% of the reads of CR and SC (two forages with the highest initial NDF 

contents) but in less than 2% of the reads of AP and KS (p < 0.05) and also in DP and RS (Figure 3a). CR contained 
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more Lentisphaerae compared with other forages (p < 0.001) while SC carried more Spirochaetes relative to AP (p < 

0.02).

At the family level (Figure S5), the forage-attached microbes were affiliated to 76 families, of which nine showed 

differential abundances among the forages, including Bacteroidaceae, Clostridiaceae, Fibrobacteraceae, 

Victivallaceae, Christensenellaceae, Lachnospiraceae, Spirochaetaceae, Oxalobacteraceae and RFP12 (ANCOM p < 

0.05). Interestingly, Victivallaceae were significantly overrepresented in CR compared with other forages (p < 0.05), 

while Bacteroidaceae was significantly enriched in CR and RS compared with AP, DP, KS and SC. Oxalobacteraceae 

was more abundant in KS and SC than in AP, CR, DP and RS (p < 0.05). Members of Fibrobacteraceae also more 

frequently appeared in CR and SC compared with AP, KS and RS with the lowest initial NDF contents (p < 0.02), 

while those of Clostridiaceae and Lachnospiraceae were underrepresented in CR compared with other forages (p < 

0.05).

Particle-attached microbiota were affiliated to 119 genera (taxonomic level 6), of which 12 displayed differential 

abundances among the forages (ANCOM p < 0.05, Figure 4) most of which were among high abundant members of 

rumen community which are known to play key roles in plant lignocellulose degradation, including Ruminococcus, 

Fibrobacter, Prevotella, Treponema, Lachnospira, Succinivibrio, Pseudobutyrivibrio, Butyrivibrio, Oxalobacter, 

Clostridium, BF311 and Succiniclasticum. Ruminococcus and members of BF311 were more dominant in RS than in 

AP, KS and SC (p < 0.001). Fibrobacter were more highly represented in CR and SC. Species of Lachnospira were 

present in 0.3% of the reads of AP and KS (p < 0.05) but only 0.11% of CR and 0.09% of SC. Succinivibrio were 

overrepresented in AP and SC compared with CR (p < 0.05). Species of Prevotella were more abundant in CR (> 21% 

of the reads) than in DP and SC (p < 0.008). Compared to other forages, CR carried less Butyrivibrio and 

Pseudobutyrivibrio species (p < 0.007).

Changes in forage-attached microbes during the rumen incubation

In order to examine whether the community composition of forage-attached microbes changed during the rumen 

incubation, the relative abundances of the microbes were tracked at 24 h intervals (Figure 5). The abundances of eight 

out of the 119 bacterial genera showed significant differences among the incubation lengths (Bonferroni corrected p 

< 0.05). Interestingly, the proportions of cellulolytic bacteria belonging to unclassified Ruminococcaceae linearly 

increased with the incubation lengths in AP, KS and SC. The proportion of Fibrobacter sharply dropped after the first 

24 h and reached to an average of 4% between 48 and 96 h of the incubation in CR. Members of Pseudobutyribibrio 

linearly decreased in AP and KS while those of Butyrivibrio increased in CR with the incubation lengths. Members 

of Clostridium increased in SC but those of Prevotella and unclassified Paraprevotellaceae decreased with the 

incubation lengths, which were consistent with findings of Cheng et al. (2017).

Relationship between lignocellulose degradation and forage-attached microbial communities
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The Pearson’s correlation between the initial physicochemical properties of the forages and the composition of the 

forage-attached microbiota during initial hours (24 h) of the rumen incubation was performed to determine whether 

rumen microbes preferred specific forages for attachment. Only correlations with p-values (Bonferroni-corrected) less 

than 0.05 were considered to have significant biological terms. This analysis demonstrated that the prevalence of the 

family Fibrobacteraceae (r = 0.77, p = 0.03) was positively correlated with NDF contents of the forages. At the genus 

level, the abundance of Fibrobacter (r = 0.77, p = 0.05) was positively but an unclassified Erysipelotrichaceae genus 

p-75-a5 (r = -0.79, p = 0.03) was negatively correlated with NDF contents in the forages. When hemicellulose contents 

were considered, a negative correlation with members of the family Pirellulaceae (r = -0.79, p = 0.02) was detected.

We also correlated microbial profiles with physicochemical properties of the forages during the rumen incubation. 

This analysis revealed that the prevalence of the families Fibrobacteraceae (r= 0.83, p = 0.03 in CR), 

Anaeroplasmataceae (r = 0.82, p = 0.04 in CR), Prevotellaceae (r = 0.83, r = 0.04 in KS) and Paraprevotellaceae (r = 

0.85, p = 0.02 in SC) were positively but Ruminococcaceae (r = < -0.85, p < 0.01 in CR and SC) and unclassified 

Bacteroidales (r = -0.84, p = 0.05 in RS) were negatively corelated with DM contents of the forages. Particularly, 

members of Ruminococcaceae were positively correlated with ADF, ADL and hemicellulose contents in CR, DP and 

SC (r > 0.8 and p < 0.04), the forages with the highest initial NDF contents (Figure 1). The population of 

Lachnospiraceae was also positively correlated (r = 0.83, and p = 0.04) with cellulose content in CR.

To ascertain whether there was any relationship between the rumen microbiota and lignocellulose degradation, an 

additional Pearson’s correlation analysis was performed between DM loss and the relative abundance of forage-

attached microbial communities during the rumen incubation. Interestingly, DM degradation was positively correlated 

with the prevalence of the families Fibrobacteraceae (r > 0.76, p < 0.001 in CR) and Spirochaetaceae (r = 0.91, p = 

0.0004 in KS) but was negatively corelated with species belonging to unclassified Bacteroidales (r < -0.82, p < 0.05 

in CR and DP), Ruminococcaceae (r = -0.83, p = 0.04 in CR), Mogibacteriaceae (r < -0.82, p < 0.05 in CR and RS) 

and Erysiopelotrichaceae (r = -0.87, p = 0.01 in CR). The correlations of cellulose and hemicellulose degradations 

with the abundances of forage-attached microbes also showed similar patterns.

Discussion

In this study, we investigated the relationship between biomass degradation of and microbial attachment to six 

common lignocellulosic forages varying in their physicochemical properties, including percentages of NDF, ADF, 

ADL and the contents of cellulose and hemicellulose. Forages containing the highest cellulose contents [(common 

reed (CR) vs. camelthorn (AP)] were degraded to a limited extent during the initial hours of their rumen incubation. 

The total DM degradation was mainly determined by NDF contents of the forages, because as rice straw (RS) with 

the lowest initial NDF (77.4%) had the fastest (66%) while CR with the highest initial NDF (87.2%) had the lowest 

(42%) DM loss over 96 h of the incubation. Variability in DM degradation of feeds reflected the differences in 

lignocellulose composition of their cell walls (Bruno-Soares et al. 2000; Jančík et al. 2010). The rate and extent of 

DM fermentation in the rumen determines the nutrition efficiency of feeds to ruminants (Jančík et al. 2010).
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The 16S rRNA gene sequencing data allowed taxonomic identification and quantification of the rumen microbiota 

tightly attached to the forages. Rarefaction analysis based on the indices reflecting species richness and species relative 

abundance, e.g. Shannon and Simpson (Kim et al. 2017), indicated that the majority of the diversity of rumen 

microbiota attached to the forages was already sampled not sufficiently and evenly sampled. Alpha diversity analysis 

also showed a limited biologically significant difference among the forages, which could likely be attributed to a high 

microbial heterogeneity among animals included in the study. The changes in diversity measures were largely 

restricted to the initial hours of rumen incubation when maximal DM degradation occurred. The differences in species 

richness and evenness were linked to cellulose contents of the forages, where CR and RS with the highest cellulose 

contents displayed limited species diversity. This result was in agreement with the data on rice straw and alfalfa hay 

being fed to Holstein cows, in which more bacteria attached to alfalfa with lower NDF (Liu et al. 2016). These findings 

suggested that only a limited fraction of rumen microbiota was capable of attachment to feeds with high lignocellulose 

contents.

Analysis of community structure of forage-attached microbiota by Unifrac dissimilarity matrix revealed significant 

differences among the forages and across the length of rumen incubation. Particularly, CR-attached microbiota was 

well separated from those of other forages at the first 24 h of the incubation. In addition, microbiota attached to CR 

and SC, the two forages with the highest initial NDF contents, were also distantly clustered while those of other 

forages did not show any apparent separation, indicating the similarity of their communities. These variations could 

likely be determined by the nature of the forages, e.g., their chemical compositions. Unifrac diversity measure also 

showed that extension of the incubation time contributed to the increased similarity across the samples, as reflected 

by the overlapped clustering in the PCoA plots for most samples collected at 72 and 96 h of the incubation. This could 

be explained by the fact that initial DM degradation resulted in the reduction of digestible components but the 

accumulation of indigestible residues which had quite similar properties across the forages, thus favoring the 

attachment of structurally similar communities of rumen microbiota. Huws et al. (2013) also observed similar changes 

in the microbial communities attached to perennial ryegrass following its rumen incubation.

Members of Firmicutes, Bacteroidetes, Fibrobacteres, Spirochaetes and Proteobacteria were dominant in all samples, 

accounting for greater than 96% of the bacterial communities attached to the forages, consistent with the findings for 

rice straw and alfalfa hay (Liu et al. 2016). The abundance of these bacterial phyla varied among the forages and 

across the incubation lengths. Particularly, species of Bacteroidetes were more abundantly attached to the forages with 

high ADF contents (AP and CR). Bacteroidetes were among highly abundant members of the rumen microbiota being 

best recognized for their saccharolytic activities. The presence of a high number of pectinolytic and cellulolytic 

enzymes in their genomes clustered with other lignocellulose degrading enzymes into polysaccharide utilization loci 

(PUL) suggested that they are also actively involved in pectin, hemicellulose and cellulose degradation (Gharechahi 

and Salekdeh 2018; Lapebie et al. 2019; Naas et al. 2014). Within this phylum, members of the families 

Bacteroidaceae, Prevotellaceae and Paraprevotellaceae displayed significant differences among the forages. 

Particularly, Bacteroidaceae were significantly overrepresented in the forages with the lowest initial ADL contents 

(CR and RS). At the genus-level, this differential abundance was only affiliated to the BF311, an uncultured and 
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unknown rumen bacterium. Prevotellaceae were particularly positively correlated with DM degradation, suggesting 

their active role in lignocellulose degradation in the rumen. Prevotella spp. are abundant members of the rumen 

microbiome that have a high genetic diversity and thus the ability to thrive on a wide range of substrates, including 

cellulose, hemicellulose, pectin, proteins and peptides (Dodd et al. 2010; Golder et al. 2014). They are known for their 

xylanolytic properties in the rumen and thus play an important role in fiber degradation (Dodd et al. 2010).

Fibrobacteres were predominantly represented in microbiota attached to the forages with the highest NDF contents 

[e.g. CR and Salicornia (SC)]. They are known to produce a battery of cellulolytic enzymes capable of degrading 

cellulose as a sole carbon source (Flint et al. 2008; Suen et al. 2011). The association of forage NDF content with the 

prevalence of Fibrobacter is also recently observed in the cow rumen microbiota (Liu et al. 2016). In contrast to 

Fibrobacteres, the genera Clostridium, Shuttleworthia and Ruminococcus tended to attach the forages with limited 

NDF and cellulose contents. This is consistent with previous findings on the preference of Ruminococcus species for 

attachment to high quality sugar-rich hays (Klevenhusen et al. 2017). Ruminococcaceae showed a strong negative 

correlation with total DM contents in the forages as well. Shinkai et al. (2010) also reported that members of 

Fibrobacteres, including F. succinogenes, abundantly attached to less digestible fibers while those of 

Ruminococcaceae, specifically R. flavefaciens, preferred easily digestible fibers and thus were infrequently detected 

in the stem parts of hays. The rate and extent of fiber degradation by F. succinogenes are also greater than R. albus 

and R. flavefaciens (Kobayashi et al. 2008). Early microscopy analysis indicated that R. albus is less commonly 

attached to plant cell walls while F. succinogenes forms extensive microcapsula enveloping the cell walls (Chesson 

et al. 1986). The community of unclassified Ruminococcaceae tended to linearly expand in AP, KS and SC following 

their rumen incubation. This finding suggested that the degradation of surface accessible fibers turned forage residues 

into favored substrates for the attachment by species of Ruminococcaceae. A declined abundance of species of 

Ruminococcus has been reported in the cow rumen when the starch content of diet was increased (Zened et al. 2013). 

Ruminococcus spp. have been equipped with specialized mechanisms for fiber adhesion and degradation, in which 

multiple carbohydrate degrading enzymes assemble into multienzyme cellulosome complexes capable of attachment 

to and degradation of polysaccharides in various plant cell walls (Bayer et al. 2004; Doi and Kosugi 2004).

Recently, Huws et al. (2016) reported that microbial colonization of perennial ryegrass occurred at two successive 

stages: The primary (the first 1-2 h after its rumen entry) and the secondary phases (4-8 h). It was the secondary phase, 

during which the maximal DM degradation was achieved and the proportion of Succinivibrio spp. decreased while 

those of Pseudobutyrivibrio, Roseburia and Ruminococcus spp. increased. Piao et al. (2014) also observed that the 

populations of Pseudobutyrivibrio and Ruminococcus spp. increased during their secondary colonization to 

switchgrass in the Friesian cow rumen. The microbial communities attached to feeds during the primary phase were 

believed to utilize soluble and easily accessible nutrients while those colonized feeds during the secondary phase were 

considered to be the true lignocellulose degraders (Huws et al. 2016; Liu et al. 2016). In this study, an increased 

prevalence of Butyrivibrio was noted in CR. Butyrivibrio spp. are known for their proteolytic, hemicellulolytic and 

biohydrogenating activities (Krause et al. 2003). Liu et al. (2016) reported a strong positive correlation between the 
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abundance of Butyrivibrio spp. and the crude protein contents in the rice straw and alfalfa hay, suggesting their 

preference for the attachment to proteinaceous components of the feeds.

In summary, our results demonstrated that physicochemical compositions of the forages, more specifically their 

cellulose contents, were among the major factors influencing microbial attachments and thus lignocellulose 

degradation in the cattle rumen. No taxonomic lineage was found to be specific of a particular forage, suggesting that 

most rumen microbes had an inherent tendency for attachment to lignocellulosic substrates. However, differential 

attachments to the forages by rumen microbiota suggested that the physicochemical properties were the key factors 

influencing the rate of microbial attachment. Our results also revealed that members of the rumen microbiota competed 

for their attachments to the forages with different lignocellulose compositions mostly during the initial hours of the 

rumen incubation. However, after the degradation of easily digestible components in the forages, relatively uniform 

microbial communities developed on their surface.

It should be noted that the bacterial community composition detected in each forage at each sampling interval may 

not necessarily reflect the actual abundance of microbes due to an inherent bias in sample collection, processing and 

storage as well as DNA extraction and PCR amplification, which may cause over- or under-representation of some 

taxa. For example, a recent comparative analysis of various DNA extraction methods used in rumen microbiome 

analyses argued that DNA extraction method can have an adverse effect on the community composition of rumen 

samples and may associate with an increased or decreased abundance of some specific taxa (Henderson et al. 2013). 

Particularly, the inclusion of a physical lysis step using bead-beating method increased the efficacy of DNA extraction 

from Gram-positive bacteria (Knudsen et al. 2016). The extent to which our DNA extraction method, in which the 

physical lysis step was not included, affected community composition of the forage-attached microbiota was unknown. 

In addition, the high number of PCR cycles may increase the number of PCR artifacts and bias the microbial 

compositions.
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Figure legends

Figure 1. Differences among the six forages in dry matter (DM) and percentages of neutral detergent fiber (NDF), 

acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose and hemicellulose before (0 h) and after 24, 48, 72, 

and 96 h of the rumen incubation. The solid circle and error bar in each boxplot show mean and standard deviation, 

respectively. Statistically significant differences were determined using one-way ANOVA. Means were compared 
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using Duncan’s multiple range test and are labelled with different letters at each sampling interval for p < 0.05. AP, 

camelthorn; CR, common reed; DP, date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 2. Beta diversity analysis of rumen microbial communities attached to the six forages during the rumen 

incubation. PCoA plots show the distribution of samples based on weighted Unifrac distance matrix, in which samples 

are grouped according to the forages (a) and the sampling intervals (b). Significant differences were tested using 

PERMANOVA with a p-value cutoff 0.01. The percentage of variation explained by each principle coordinate is 

indicated next to the corresponding axis. The homogeneity of dispersions was also tested for this diversity measure to 

examine variance differences between the forages (c) and the sampling intervals (d). Significant differences were 

determined using the betadisper function of R package vegan v2.5-5 at 999 permutations. P-values < 0.05 were 

considered statistically significant. For each treatment, data in triplicate representing three separate bags, were 

included. AP, camelthorn; CR, common reed; DP, date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 3. (a) The proportions of reads (mean ± SD) assigned to the major bacterial phyla (n = 7) detected in the forage-

attached microbial communities. The relative abundances were calculated based on the proportion of reads assigned 

to each phylum in the rarefied OTU table at an even sequencing depth of 4660 reads. (b) Box plots show relative 

abundance of phyla differentially attached to the forages. Statistically significant differences were calculated based on 

the analysis of composition of microbes (ANCOM) using p < 0.05 following Duncan’s multiple range test for 

comparison of the means. Center lines indicate the median value, boxes the interquartile range and red squares the 

mean. Means with different letters differ at Bonferroni corrected p < 0.05. AP, camelthorn; CR, common reed; DP, 

date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 4. The log of relative abundances of genera differentially attached to the six forages following the rumen 

incubation. Differential abundances were statistically tested using ANCOM with a p-value cutoff < 0.05. Means were 

compared using Duncan’s multiple range test only accepting Bonferroni corrected p-values < 0.05. Boxplots labeled 

with different letters show statistically significant differences. Center line represents median value. AP, camelthorn; 

CR, common reed; DP, date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 5. The average relative abundances of taxa (genus level) differentially represented in microbial communities 

attached to the six forages during the rumen incubation (up to 96 h with 24 h intervals). Statistically significant 

differences were calculated using ANCOM and means were compared using Duncan’s multiple range test. Error bars 

represent standard deviations and their lengths are adjusted at 95% confidence interval. Means with different letters 

are statistically significant at Bonferroni corrected p < 0.05. No taxa were found to be differentially represented in DP. 

AP, camelthorn; CR, common reed; KS, Kochia; RS, rice straw; and SC, Salicornia. “Un” refers to unclassified.

Supplementary materials

Figure S1.

Changes in DM contents and percentages of NDF, ADF, ADL, cellulose and hemicellulose in six forages during the 

rumen incubation. The solid circle in each boxplot shows mean and error bars represent standard deviation. 
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Statistically significant differences were determined using one-way ANOVA. Means were compared using Duncan’s 

multiple range test and labelled with different letters for p < 0.05.

Figure S2.

Alpha diversity analysis through rarefaction plots. (a) Rarefaction curves showing the increase in number of observed 

OTUs; (b) Species richness (number of observed OTUs + number of unobserved OTUs, Chao1); (c) Shannon; and (d) 

Simpson diversity indices on Y-axis as a function of the number of reads sampled on X-axis.

Figure S3.

Alpha diversity indices of rumen microbiota attached to the six forages with different lignocellulosic compositions at 

24, 48, 72 and 96 hours of the rumen incubation. Alpha diversity indices were measured based on OTUs present at an 

even sequencing depth of 4,660 reads (corresponding to the sequencing depth of the sample with the lowest number 

of reads) in all samples. Statistically significant differences were determined using one-way ANOVA and means were 

compared by Duncan’s multiple range test. * p value < 0.05, ** p value < 0.01 and *** p value < 0.001.

Figure S4.

Alpha diversity analysis of rumen microbial communities attached to the six forages during the rumen incubation. The 

OTU table for each forage was sampled at an even sequencing depth (n = 4660) and diversity measures were calculated 

using plot_richness function of R package phyloseq and visualized using geom_boxplot function of R package 

ggplot2. Statistically significant differences were calculated using one-way ANOVA at p-value cutoff of 0.05. 

Differences between means were determined using Duncan’s multiple range test in PAST v3.26. * p value < 0.05, ** 

p value < 0.01 and *** p value < 0.001.

Figure S5.

The proportions of reads affiliated to OTUs at the taxonomic level of family in the six forages during the rumen 

incubation. Data for each sampling interval is the mean of three biological replicates corresponding to three bags 

retrieved one each from the three cannulated bulls. For each forage, the OTU table is rarefied to the sequencing depth 

of the sample with the lowest number of reads.
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Abstract

The attachment of rumen microbes to feed particles is critical to feed fermentation, degradation and digestion. 

However, the extent to which the physicochemical properties of feeds influence the colonization by rumen microbes 

is still unclear. We hypothesized that rumen microbial communities may have differential preferences for attachments 

to feeds with varying lignocellulose properties. To this end, the structure and composition of microbial communities 

attached to six common forages with different lignocellulosic compositions were analyzed following in situ rumen 

incubation in male Taleshi cattle. The results showed that differences in lignocellulosic compositions significantly 

affected the inter-sample diversity of forage-attached microbial communities in the first 24 hours (h) of rumen 

incubation, during which the highest dry matter degradation was achieved. However, extension of the incubation to 

96 h resulted in the development of more uniform microbial communities across the forages. Fibrobacteres were 

significantly overrepresented in the bacterial communities attached to the forages with the highest neutral detergent 

fiber contents. Ruminococcus tended to attach to the forages with low acid detergent lignin contents. The extent of dry 

matter fermentation was significantly correlated with the populations of Fibrobacteraceae, unclassified Bacteroidales, 

Ruminococcaceae and Spirochaetacea. Our findings suggested that lignocellulosic compositions, more specifically 

the cellulose components, significantly affected the microbial attachment to and thus the final digestion of the forages.

Keywords: microbiome, microbiota, rumen, rumen incubation, 16S rRNA gene sequencing, rumen fermentation, 

biomass degradation
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Introduction

The gastrointestinal tracts (GIT) of ruminant animals have evolved to allow the colonization by a diverse community 

of symbiotic microorganisms belonging to three taxonomic domains of life, i.e. Archaea, Bacteria and Eukarya. 

Particularly, as the first and the largest compartment of ruminant stomach, rumen is the main site of microbial 

colonization and fermentation. Without the aid of such microorganisms, the host ruminants cannot digest and convert 

plant lignocellulosic biomasses into energy and other essential metabolites (Jami and Mizrahi 2012; Mackie 2002). It 

is estimated that almost 70% of the energy requirement of ruminants is supplied by this microbial fermentation 

(Bergman 1990). In addition to their crucial role in animal nutrition and production, the GIT microorganisms remain 

vital to animal health, physiology and immunity against pathogenic microbes (Guarner and Malagelada 2003; Hungate 

2013).

Bacteria are the major colonizers in the rumen and consequently make the greatest contribution to plant biomass 

fermentation, degradation and digestion. Early studies on rumen microbial communities relied largely on culture-

based approaches, which were limited to the bacteria that can grow on culture medium. With the advances in next-

generation sequencing technologies, culture-independent approaches have gained preference, enabling researchers to 

achieve a deeper insight into precise composition and structure of rumen bacterial communities. The latest high 

throughput amplicon-based 16S ribosomal RNA gene (rRNA) sequencing studies suggest that rumen bacterial 

communities of most ruminants are mainly affiliated to the phyla of Bacteroidetes, Firmicutes, Proteobacteria, 

Fibrobacteres, Spirocheaetes, Actinobacteria, Tenericutes and Verrucomicrobia, which collectively account for 

greater than 99% of the total rumen bacterial communities (Godoy-Vitorino et al. 2012; Jami et al. 2013; Jami and 

Mizrahi 2012; Zened et al. 2013). Microbial communities are dynamic in the rumen and depend on the host species 

and its diet, age, physiology and health status (Godoy-Vitorino et al. 2012; Jami et al. 2013; Jami and Mizrahi 2012; 

Kocherginskaya et al. 2001; Kong et al. 2010; Petri et al. 2012). Under normal physiological conditions, diet is the 

major driver to determine the composition and structure of rumen bacterial communities (Petri et al. 2012). 

Interestingly, the amount of dietary fiber is a key factor shaping the growth and multiplication of cellulolytic bacteria 

in the rumen. Changing dietary fiber content or substituting the fiber with easily fermentable carbohydrates has a 

profound impact on the community of rumen microbiota and may result in metabolic diseases, such as subacute 

ruminal acidosis (Khafipour et al. 2009; Petri et al. 2017).

Members of the rumen bacterial communities differ in their preferences for attachment to feed particles and rumen 

wall, therefore they are accordingly categorized into particle-attached (tightly attached to feed particles), liquid borne 

(freely available in liquid fraction) and epimural (attached to rumen epithelium) communities (De Mulder et al. 2017; 

Gharechahi et al. 2015; Kong et al. 2010; Sadet et al. 2007). The attachment of rumen microbial communities to feed 

particles is a key step in the process of rumen fermentation and digestion (McAllister et al. 1994) and it occurs shortly 

after feed entry into the rumen. Analysis of microbial communities associated with perennial ryegrass following in 

situ rumen incubation in Holstein–Friesian cows or steers shows that microbial attachment initiates within five minutes 

(min) of its rumen entry and stabilizes between 15 and 30 min of its rumen incubation (Edwards et al. 2007; Huws et 
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al. 2013). A recent analysis of temporal changes in bacterial community attached to wheat straw in Holstein cow 

rumen demonstrates that the first wave of microbial-based biomass degradation occurs within 30 min of its rumen 

entry. The community of bacteria attached to feed particles during this time retains even after 72 hours (h) of the 

rumen incubation (Jin et al. 2018). The degree of dry matter (DM) degradation differs among forages during the initial 

hours of their rumen entry (Cheng et al. 2017; Liu et al. 2016). The community composition of particle-attached 

microbes also varies among feeds and is likely influenced by the chemical compositions of feeds because cellulolytic 

bacteria such as Fibrobacter, Ruminocuccus, Butyrivibrio and unclassified Treponema tend to attach to feeds with 

relatively high neutral detergent fiber (NDF, Cheng et al. 2017; Liu et al. 2016). The community of feed particle-

attached bacteria also changes over the incubation time. For instance, rumen microbiota attachment to switchgrass in 

Friesian cow occurs at two successive stages: The first wave takes place immediately after its rumen entry (within the 

first 30 min) and is characterized by high abundances of Bacteroidia and Clostridia. The second wave, however, occurs 

after 16 h of its rumen incubation, during which the populations of Spirochaeta and Fibrobacteria become dominant 

(Piao et al. (2014).

There is limited knowledge on rumen bacteria diversity, their preference for attachment to and degradation of feeds 

with extreme values of cellulose and/or hemicellulose. Understanding the dynamics of bacteria attached to feeds at 

high level of lignification provides opportunities to improve the nutrient efficiency of low-quality forages through 

pre-treatments or manipulation of rumen microbial communities. We hypothesized that rumen bacterial communities 

differ in lignocellulose degrading capacities and thus show preference for attachment to feeds with different levels of 

lignification. We therefore aimed to evaluate whether the rumen microbes have any preference for attachment to 

forages with different cellulose and/or hemicellulose contents. We also explored the dynamic changes in microbial 

communities attached to the forages under prolonged incubation in the cattle rumen (e.g. up to 96 h with 24 h sampling 

intervals). Overall, our 16S rRNA genes-based diversity analysis revealed significant differences in the composition 

and structure of microbial communities attached to different forages.

Materials and methods

In situ rumen incubation and sample collection of the forages

All experimental procedures relevant to animals were approved by the Ethics Committee for Animal Experiments of 

the Animal Science Research Institute of Iran. Rumen cannulation was performed according to the American College 

of Veterinary Surgeons (ACVS) using a two-stage rumen cannulation technique (Martineau et al. 2015).

Six common lignocellulosic forages, including camelthorn (Alhagi persarum, AP; both stem and leaves), common 

reed (Phragmites australis, CR; stem and leaves), date palm (Phoenix dactylifera, DP; leaves), kochia (Kochia 

scoparia, KS; both stem and leaves), rice straw (Oryza sativa; cultivar Hashemi, RS; both stem and leaves) and 

salicornia (Salicornia persica, SC; both stem and leaves), were selected for in situ rumen incubation. Dried forage 

materials were cut into pieces of approximately 2 mm in length and an equal amount of the pieces (5 ± 0.05 g) was 

weighed into heat-sealed nylon bags (5 × 10 cm; 50 μm pore size). Three rumen-cannulated, purebred bulls (Taleshi 
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cattle, an Iranian local breed with a historical origin of Bos taurus mixed with Bos indicus) aged between 2.5 and 3 

years were used for this study. Forty-eight heat-sealed bags, eight per forage, were simultaneously placed into each of 

the three rumens shortly after the cannulated bulls were offered the first meal in the morning. The bulls were housed 

together in a stable, fed on a mixed diet containing 70% wheat straw and 30% concentrate and provided free access 

to water. Two nylon bags from each of the six forages were retrieved from each rumen after 24, 48, 72 and 96 h of the 

incubation, washed thoroughly with distilled water three times to remove liquid borne and loosely attached microbes, 

which may not have a discriminating preference for attachment to forages with different lignocellulose properties, and 

finally squeezed by hands with sterile gloves to remove excess water. The bags were then transferred in liquid nitrogen 

to the laboratory where one replicate was stored at -70 °C for subsequent DNA extraction while the other was 

processed for physicochemical analysis.

Physicochemical analysis of the incubated forage materials

The forage lignocellulosic biomasses were analyzed for dry matter (DM) and the contents of neutral detergent fiber 

(NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) before and after the rumen incubation. DM was 

determined following 48 h air-drying of the samples in a fan-assisted oven maintained at 55 °C. The dried material 

was grounded to pass through a 1-mm sieve for the measurements of NDF, ADF and ADL according to the established 

procedures (Goering 1970; Van Soest et al. 1991). Cellulose content was estimated by subtracting ADL from ADF 

while hemicellulose content was measured by subtracting ADF from NDF.

Microbial cell recovery and metagenomic DNA extraction

Microbial cells firmly attached to the forages were subsequently stripped by incubating individual samples on ice in 

a dissociation buffer containing 0.1% (v/v) Tween 80, 1% (v/v) methanol and 1% (v/v) tertiary butanol (adjusted at 

pH 2), which has been particularly adapted for the dissociation of microbial cells from the rumen solid digesta. The 

samples were vigorously vortexed every 1 min and this step was repeated at least 5 times. The forage materials were 

sedimented by centrifugation at 500  g and the liquid supernatant containing microbial cells was transferred to a new 

container. This step was repeated at least three times and the collected liquids were centrifuged at 12000  g for 10 

min to sediment the detached microbial cells. Metagenomic DNA from the detached cells was extracted using the 

QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol for the isolation 

of DNA from stools for pathogen detection. The quality and quantity of the extracted DNA were evaluated by an 

agarose gel electrophoresis (0.8%) and a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

PCR amplification and Illumina sequencing of 16S rRNA gene

The V3-V4 hypervariable region of 16S rRNA gene was amplified using the universally conserved primer set S-D-

Bact-0341-b-S-17 (5′-CCT ACG GGN GGC WGC AG-3′) and S-D-Bact-0785-a-A-21 (5′-GAC TAC HVG GGT 

ATC TAA TCC-3′), which generated a fragment of 464 bp suitable for paired-end sequencing using the Illumina 

MiSeq System (Illumina Inc. San Diego, CA, USA). PCR amplification was performed in triplicate in a 25 L reaction 
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containing 12.5 L 2 PCR master mix (Qiagen), 1 L (10 pM) of each primer, 30 ng of microbial DNA and 5-9 L 

of double-distilled water. The PCR condition consisted of an initial denaturation at 94 °C for 4 min followed by 30 

cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and a final extension at 72 °C for 5 min. PCR products 

were purified and 2 L of each reaction was used as a template for the second round of PCR, during which the Illumina 

adaptors and barcode sequences were incorporated to the 5’-end of the amplified products. The second PCR was also 

performed in triplicate under the same running condition except the number of cycles were limited to 15. The PCR 

amplicons were recovered using the Qiaquick® Gel Extraction Kit (Qiagen), quantified fluorometrically, pooled in 

equimolar quantities and paired-end sequenced (PE300) using the Illumina MiSeq System at Macrogen Inc. (Seoul, 

South Korea).

Sequence analysis

Quality filtered paired-end sequences were joined using the Flash with --max-overlap option set to 200 (Magoc and 

Salzberg 2011). Sequences failed to be assembled were discarded. The joined FASTQ files were processed using 

split_libraries_fastq.py script in the QIIME pipeline v1.9.1 (Caporaso et al. 2010b). This script demultiplexed 

sequences and filtered out sequences shorter than 200 bp or longer than 1000 bp, along with those containing 

ambiguous bases with a mean quality score < 20, having runs of six or more of the same nucleotides, carrying a 

missing quality score and including > two mismatches from the primer sequences. The multiplexed sequences were 

searched against the latest Ribosomal Database Project (RDP release 11.5, containing 3,356,809 16S rRNA sequences) 

to identify and discard chimeric sequences using the VSEARCH v2.8.3 operated under default setting (Rognes et al. 

2016). Non-chimeric sequences were then used to pick operational taxonomic units (OTUs) using the 

pick_de_novo_otus.py script in the QIIME pipeline as described in details in our previous paper (Gharechahi et al. 

2017). OTUs were defined at 97% identity using the Uclust (Edgar 2010). The most abundant sequence in each OTU 

cluster was selected as being a representative; and these sequences were then aligned against the Greengenes core set 

(gg_13_8; (DeSantis et al. 2006)) using the PyNAST aligner with a minimum sequence identity of 75% (Caporaso et 

al. 2010a). Taxonomies were assigned to each OTU using the Ribosomal Database Project naïve Bayesian classifier 

(Wang et al. 2007) by applying a minimum confidence value of 0.8. The OTU table was filtered for low abundant 

OTUs using the filter_otus_from_otu_table.py script with --min_count_fraction option set to 0.00001 (discarding 

OTUs represented by < 0.001% of the sequences) and then rarefied to the sequencing depth at 4660 reads 

corresponding to the number of reads in the sample with the smallest set of sequences. Rarefaction plots and alpha 

diversity indices, including Shannon, Simpson, Good’s_coverage and Chao1, were calculated using the 

core_diversity_analyses.py script in the QIIME pipeline. Beta diversity indices, including weighted and unweighted 

Unifrac phylogenetic distance matrices, were constructed with the rarefied OTU table as input and visualized through 

the principal coordinate analysis (PCoA) plots in the MicrobiomeAnalyst web server (Dhariwal et al. 2017).

Statistical analysis
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Statistically significant differences in physicochemical data, including DM, NDF, ADF, ADL, cellulose and 

hemicellulose contents, were analyzed by one-way ANOVA using the general linear model (GLM) procedure in the 

SAS software v9.3 (SAS Institute Inc., Cary, NC, USA). Permutational multivariate analysis of variance 

(PERMANOVA) was performed using the adonis function of R-package vegan v2.5-5 to test for significant 

differences between community compositions of forage-attached microbial communities. In addition, permutation 

multivariate analysis of group dispersions (PERMDISP) based on the betadisper function of the vegan was used to 

test for the homogeneity of dispersions (variances). Differences in taxa abundances among forages and sampling 

intervals were estimated using analysis of composition of microbes (ANCOM) based on relative abundances of OTUs 

summarized at various taxonomic levels (Mandal et al. 2015). Means were compared by Duncan's Multiple Range 

test (DMRT) in PAST v3.26 given Bonferroni p-value cutoff < 0.05 (Hammer et al. 2001). Error correction was done 

based on the number of groupwise comparisons performed at each taxonomic level. The Pearson’s correlation analysis 

was performed using the corr.test function of the psych package v1.8.12 and p-values were corrected using Bonferroni 

method based on the total number of correlations calculated for each variable separately. For all tests, p-values less 

than 0.05 were considered statistically significant.

Results

Physicochemical properties of the rumen-incubated forages

The six forages were analyzed for the contents of NDF, ADF, ADL, cellulose and hemicellulose before their rumen 

incubation (Figure 1). They showed different NDF contents (p < 0.05), being the highest in common reed (CR) but 

the lowest in both camelthorn (AP) and rice straw (RS). Most of them also contained different ADF contents (p < 

0.05), being the highest in AP but the lowest in both RS and salicornia (SC). The contents of ADL also differed 

significantly between the forages (p < 0.05), with AP being the highest at 2 times that in date palm (DP), three times 

those in SC, CR and kochia (KS; the latter two with similar contents at p > 0.05) and 6 times the lowest value in RS 

(24.86% vs 4.06%). CR carried the highest cellulose followed by DP, RS, KS and SC while AP contained the lowest 

cellulose (p < 0.05). SC possessed the highest amount of hemicellulose followed by CR, KS, RS, DP and AP. Overall, 

all the six forages had different physicochemical properties in terms of their relative contents of hemicellulose, 

cellulose and lignin.

Lignocellulosic biomass degradation following the rumen incubation

The six forages were monitored for their changes in the contents of DM, NDF, ADF, ADL, cellulose and hemicellulose 

during the rumen incubation (Figure 1 and Figure S1). DM degradation was the fastest in AP but the slowest in CR 

(42% vs 34%, p < 0.05) during the first 24 h of the incubation. DM degradation was completed in AP at 24 h but 

continued in CR and KS until 48 h, and in DP, RS and SC up to 96 h of the incubation, with RS having the highest 

degraded DM (66%) followed by SC (56%) and DP (53%). AP, DP and KS demonstrated similar trends of 

significantly increased NDF, ADF, ADL and cellulose contents (p < 0.05), mirrored in their patterns of DM 

degradations, mostly within the first 24 h, but their hemicelluloses decreased continuously (p < 0.05 in most cases) 
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following the incubation. However, the patterns of these five fiber-related parameters were significantly segregated 

among CR, RS and SC during the incubation. Although ADF and ADL were significantly increased but celluloses 

were remarkably declined in CR and SC (p < 0.05), their NDF and hemicelluloses showed contrasting patterns, being 

significantly reduced in CR while steadily accumulated in SC (p < 0.05) throughout the incubation. ADF, cellulose 

and hemicellulose in RS maintained stable levels while its NDF and ADL were slightly increased (p < 0.05) along the 

incubation. It was apparent that the initial differences in fiber-related physicochemical properties significantly affected 

the rumen digestion of the six forages.

16S rRNA gene sequencing

The paired-end sequencing of PCR amplicons from the V3-V4 region of 16S rRNA gene resulted in 5,945,300 pairs 

of raw sequences (averaged at 82,573 sequences per sample) with an average length of 300 bp. Sequences were joined 

into 4,421,604 full-length amplicons at an average of 61,411  38,275 per sample. The uneven sequencing depths 

across samples may be due to the true differences in microbial abundance of samples or the technical variations 

introduced during library preparation and sequencing. Although the numbers of sequences varied greatly among the 

forages and across the lengths of the rumen incubation, there was a general pattern of a steady increase from the lowest 

at 24 h (averaged at 44,100 per sample) to the highest at 72 h (averaged at 95,823 per sample).

Sequencing data analysis

Before processing the amplicon sequences for OTU picking, they were subjected to a single round of quality filtering, 

resulting in 3,602,510 high quality sequences, of which 994,147 (27%) were identified to be chimeric and thus 

discarded from further analyses. The qualified sequences (2,493,285) were clustered at 97% similarity level into 

110,804 OTUs, of which 106,982 (96.4%, representing 202,403 sequences) were labeled as low abundant features 

(e.g. those representing reads with frequencies less than 0.001% of the total sequences) and therefore filtered out from 

the OTU table. Finally, 3,822 clean OTUs representing 2,290,882 sequences were subjected to further downstream 

analyses. To assess whether our sequencing effort provided sufficient sequencing depths to describe the diversity of 

forage-attached microbiota, rarefaction curves describing the numbers of observed OTUs, species richness (Chao1), 

Shannon and Simpson diversity at various sequencing depths were generated for all samples (Figure S2a-d). 

Rarefaction analysis based on observed species and species richness revealed incomplete sampling of microbiota and 

thus indicated that highly diverse microbial communities attached to the forages (Figure S2a and b). However, 

Shannon (Figure S2c) and Simpson indices (Figure S2d) reached plateaus, indicating that the majority of the diversity 

was explored.

Microbial diversity analysis

Differences in alpha diversity indices of forage-attached microbiota were mostly limited to the first 24 h of the rumen 

incubation, during which the maximal differences in microbial attachment occurred (Figure S3). At this time, CR and 

RS (two forages with the highest initial cellulose contents) had the lowest while AP and KS (two forages with the 
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lowest initial cellulose contents) had the highest average observed species and species richness. CR and RS also 

showed the lowest average Shannon index, indicating their limited microbial diversity (p < 0.05). Diversity indices in 

almost all forages were not affected by the incubation length (Figure S4) except that CR had very low alpha diversity 

measures at 24 h of its incubation (p < 0.05). All samples showed a high Good’s coverage (> 0.91, data not shown) at 

all sampling intervals, indicating that our sequencing effort figured out > 90% of the microbial diversity attached to 

the forages. However, the uneven sequencing depths did not allow us to fully explore the diversity of forage-attached 

microbiota. Considering potential random errors due to limited numbers of experimental animals and replicates in this 

study, such differences in alpha diversity indices among the forages were not robust enough to be interpreted with any 

biological significance.

Beta diversity analysis also showed limited variations among the forages as well as across the lengths of the rumen 

incubation. Weighted Unifrac dissimilarity matrix, which considered taxa relative abundances and their phylogenetic 

distances, explained 21% and 26% of the variations among the forages and across the lengths of the incubation, 

respectively. PERMANOVA revealed that at least some forages (e.g. CR and SC) had different microbial communities 

(Figure 2a, p < 0.001) while testing for homogeneity of group dispersions (sample distance from group centroid) 

identified no significant difference between group dispersions (Figure 2b, PERMDISP p > 0.1). Nevertheless, 

differences in microbial communities across the incubation lengths (Figure 2c, PERMANOVA p < 0.001) appeared 

to be mainly affected by within-group dispersions, either by the forage types or inter-animal variations, particularly 

during the first 24 h (Figure 2d, PERMDISP p < 0.05). At this time, CR-attached microbiota was well-separated from 

those attached to other forages. The entire microbial community structure showed a clear shift among the forages 

during the incubation because differences in the microbiota were apparent at 24 h but disappeared in later sampling 

intervals (Figure 2c and d). This finding suggested the existence of a strong preference of rumen microbiota for 

attachment to the forages of different digestibility while the rate and extent of such preference were quickly 

compromised after the initial hours of rumen digestion (24 h).

Forage-attached microbial community

A total of 18 bacterial phyla and one archaeal phylum were identified from the forage-attached microbial communities 

colonized in the Taleshi cattle rumen. The communities were dominated by phyla Firmicutes (45%) and Bacteroidetes 

(41%) followed with Fibrobacteres (5%), Spirochaetes (3%) and Proteobacteria (2%). Variations in the abundances 

of major bacterial phyla attached to the forages have been depicted in Figure 3a. The ANCOM analysis followed by 

Duncan’s post hoc test revealed differential abundances of Bacteroidetes, Fibrobacteres, Lentisphaerae and 

Spirochaetes among the forages (Figure 3b, ANCOM p < 0.05). Bacteroidetes were significantly overrepresented in 

AP and CR compared with DP and SC (DMRT Bonferroni p < 0.001). Interestingly, fiber-utilizing bacteria belonging 

to Fibrobacteres were observed in more than 9% of the reads of CR and SC (two forages with the highest initial NDF 

contents) but in less than 2% of the reads of AP and KS (p < 0.05) and also in DP and RS (Figure 3a). CR contained 

more Lentisphaerae compared with other forages (p < 0.001) while SC carried more Spirochaetes relative to AP (p < 

0.02).
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At the family level (Figure S5), the forage-attached microbes were affiliated to 76 families, of which nine showed 

differential abundances among the forages, including Bacteroidaceae, Clostridiaceae, Fibrobacteraceae, 

Victivallaceae, Christensenellaceae, Lachnospiraceae, Spirochaetaceae, Oxalobacteraceae and RFP12 (ANCOM p < 

0.05). Interestingly, Victivallaceae were significantly overrepresented in CR compared with other forages (p < 0.05), 

while Bacteroidaceae was significantly enriched in CR and RS compared with AP, DP, KS and SC. Oxalobacteraceae 

was more abundant in KS and SC than in AP, CR, DP and RS (p < 0.05). Members of Fibrobacteraceae also more 

frequently appeared in CR and SC compared with AP, KS and RS with the lowest initial NDF contents (p < 0.02), 

while those of Clostridiaceae and Lachnospiraceae were underrepresented in CR compared with other forages (p < 

0.05).

Particle-attached microbiota were affiliated to 119 genera (taxonomic level 6), of which 12 displayed differential 

abundances among the forages (ANCOM p < 0.05, Figure 4) most of which were among high abundant members of 

rumen community which are known to play key roles in plant lignocellulose degradation, including Ruminococcus, 

Fibrobacter, Prevotella, Treponema, Lachnospira, Succinivibrio, Pseudobutyrivibrio, Butyrivibrio, Oxalobacter, 

Clostridium, BF311 and Succiniclasticum. Ruminococcus and members of BF311 were more dominant in RS than in 

AP, KS and SC (p < 0.001). Fibrobacter were more highly represented in CR and SC. Species of Lachnospira were 

present in 0.3% of the reads of AP and KS (p < 0.05) but only 0.11% of CR and 0.09% of SC. Succinivibrio were 

overrepresented in AP and SC compared with CR (p < 0.05). Species of Prevotella were more abundant in CR (> 21% 

of the reads) than in DP and SC (p < 0.008). Compared to other forages, CR carried less Butyrivibrio and 

Pseudobutyrivibrio species (p < 0.007).

Changes in forage-attached microbes during the rumen incubation

In order to examine whether the community composition of forage-attached microbes changed during the rumen 

incubation, the relative abundances of the microbes were tracked at 24 h intervals (Figure 5). The abundances of eight 

out of the 119 bacterial genera showed significant differences among the incubation lengths (Bonferroni corrected p 

< 0.05). Interestingly, the proportions of cellulolytic bacteria belonging to unclassified Ruminococcaceae linearly 

increased with the incubation lengths in AP, KS and SC. The proportion of Fibrobacter sharply dropped after the first 

24 h and reached to an average of 4% between 48 and 96 h of the incubation in CR. Members of Pseudobutyribibrio 

linearly decreased in AP and KS while those of Butyrivibrio increased in CR with the incubation lengths. Members 

of Clostridium increased in SC but those of Prevotella and unclassified Paraprevotellaceae decreased with the 

incubation lengths, which were consistent with findings of Cheng et al. (2017).

Relationship between lignocellulose degradation and forage-attached microbial communities

The Pearson’s correlation between the initial physicochemical properties of the forages and the composition of the 

forage-attached microbiota during initial hours (24 h) of the rumen incubation was performed to determine whether 

rumen microbes preferred specific forages for attachment. Only correlations with p-values (Bonferroni-corrected) less 

than 0.05 were considered to have significant biological terms. This analysis demonstrated that the prevalence of the 
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family Fibrobacteraceae (r = 0.77, p = 0.03) was positively correlated with NDF contents of the forages. At the genus 

level, the abundance of Fibrobacter (r = 0.77, p = 0.05) was positively but an unclassified Erysipelotrichaceae genus 

p-75-a5 (r = -0.79, p = 0.03) was negatively correlated with NDF contents in the forages. When hemicellulose contents 

were considered, a negative correlation with members of the family Pirellulaceae (r = -0.79, p = 0.02) was detected.

We also correlated microbial profiles with physicochemical properties of the forages during the rumen incubation. 

This analysis revealed that the prevalence of the families Fibrobacteraceae (r= 0.83, p = 0.03 in CR), 

Anaeroplasmataceae (r = 0.82, p = 0.04 in CR), Prevotellaceae (r = 0.83, r = 0.04 in KS) and Paraprevotellaceae (r = 

0.85, p = 0.02 in SC) were positively but Ruminococcaceae (r = < -0.85, p < 0.01 in CR and SC) and unclassified 

Bacteroidales (r = -0.84, p = 0.05 in RS) were negatively corelated with DM contents of the forages. Particularly, 

members of Ruminococcaceae were positively correlated with ADF, ADL and hemicellulose contents in CR, DP and 

SC (r > 0.8 and p < 0.04), the forages with the highest initial NDF contents (Figure 1). The population of 

Lachnospiraceae was also positively correlated (r = 0.83, and p = 0.04) with cellulose content in CR.

To ascertain whether there was any relationship between the rumen microbiota and lignocellulose degradation, an 

additional Pearson’s correlation analysis was performed between DM loss and the relative abundance of forage-

attached microbial communities during the rumen incubation. Interestingly, DM degradation was positively correlated 

with the prevalence of the families Fibrobacteraceae (r > 0.76, p < 0.001 in CR) and Spirochaetaceae (r = 0.91, p = 

0.0004 in KS) but was negatively corelated with species belonging to unclassified Bacteroidales (r < -0.82, p < 0.05 

in CR and DP), Ruminococcaceae (r = -0.83, p = 0.04 in CR), Mogibacteriaceae (r < -0.82, p < 0.05 in CR and RS) 

and Erysiopelotrichaceae (r = -0.87, p = 0.01 in CR). The correlations of cellulose and hemicellulose degradations 

with the abundances of forage-attached microbes also showed similar patterns.

Discussion

In this study, we investigated the relationship between biomass degradation of and microbial attachment to six 

common lignocellulosic forages varying in their physicochemical properties, including percentages of NDF, ADF, 

ADL and the contents of cellulose and hemicellulose. Forages containing the highest cellulose contents [(common 

reed (CR) vs. camelthorn (AP)] were degraded to a limited extent during the initial hours of their rumen incubation. 

The total DM degradation was mainly determined by NDF contents of the forages, because as rice straw (RS) with 

the lowest initial NDF (77.4%) had the fastest (66%) while CR with the highest initial NDF (87.2%) had the lowest 

(42%) DM loss over 96 h of the incubation. Variability in DM degradation of feeds reflected the differences in 

lignocellulose composition of their cell walls (Bruno-Soares et al. 2000; Jančík et al. 2010). The rate and extent of 

DM fermentation in the rumen determines the nutrition efficiency of feeds to ruminants (Jančík et al. 2010).

The 16S rRNA gene sequencing data allowed taxonomic identification and quantification of the rumen microbiota 

tightly attached to the forages. Rarefaction analysis based on the indices reflecting species richness and species relative 

abundance, e.g. Shannon and Simpson (Kim et al. 2017), indicated that the majority of the diversity of rumen 

microbiota attached to the forages was already sampled. Alpha diversity analysis also showed a limited biologically 

Page 42 of 50

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12

significant difference among the forages, which could likely be attributed to a high microbial heterogeneity among 

animals included in the study. The changes in diversity measures were largely restricted to the initial hours of rumen 

incubation when maximal DM degradation occurred. The differences in species richness and evenness were linked to 

cellulose contents of the forages, where CR and RS with the highest cellulose contents displayed limited species 

diversity. This result was in agreement with the data on rice straw and alfalfa hay being fed to Holstein cows, in which 

more bacteria attached to alfalfa with lower NDF (Liu et al. 2016). These findings suggested that only a limited 

fraction of rumen microbiota was capable of attachment to feeds with high lignocellulose contents.

Analysis of community structure of forage-attached microbiota by Unifrac dissimilarity matrix revealed significant 

differences among the forages and across the length of rumen incubation. Particularly, CR-attached microbiota was 

well separated from those of other forages at the first 24 h of the incubation. In addition, microbiota attached to CR 

and SC, the two forages with the highest initial NDF contents, were also distantly clustered while those of other 

forages did not show any apparent separation, indicating the similarity of their communities. These variations could 

likely be determined by the nature of the forages, e.g., their chemical compositions. Unifrac diversity measure also 

showed that extension of the incubation time contributed to the increased similarity across the samples, as reflected 

by the overlapped clustering in the PCoA plots for most samples collected at 72 and 96 h of the incubation. This could 

be explained by the fact that initial DM degradation resulted in the reduction of digestible components but the 

accumulation of indigestible residues which had quite similar properties across the forages, thus favoring the 

attachment of structurally similar communities of rumen microbiota. Huws et al. (2013) also observed similar changes 

in the microbial communities attached to perennial ryegrass following its rumen incubation.

Members of Firmicutes, Bacteroidetes, Fibrobacteres, Spirochaetes and Proteobacteria were dominant in all samples, 

accounting for greater than 96% of the bacterial communities attached to the forages, consistent with the findings for 

rice straw and alfalfa hay (Liu et al. 2016). The abundance of these bacterial phyla varied among the forages and 

across the incubation lengths. Particularly, species of Bacteroidetes were more abundantly attached to the forages with 

high ADF contents (AP and CR). Bacteroidetes were among highly abundant members of the rumen microbiota being 

best recognized for their saccharolytic activities. The presence of a high number of pectinolytic and cellulolytic 

enzymes in their genomes clustered with other lignocellulose degrading enzymes into polysaccharide utilization loci 

(PUL) suggested that they are also actively involved in pectin, hemicellulose and cellulose degradation (Gharechahi 

and Salekdeh 2018; Lapebie et al. 2019; Naas et al. 2014). Within this phylum, members of the families 

Bacteroidaceae, Prevotellaceae and Paraprevotellaceae displayed significant differences among the forages. 

Particularly, Bacteroidaceae were significantly overrepresented in the forages with the lowest initial ADL contents 

(CR and RS). At the genus-level, this differential abundance was only affiliated to the BF311, an uncultured and 

unknown rumen bacterium. Prevotellaceae were particularly positively correlated with DM degradation, suggesting 

their active role in lignocellulose degradation in the rumen. Prevotella spp. are abundant members of the rumen 

microbiome that have a high genetic diversity and thus the ability to thrive on a wide range of substrates, including 

cellulose, hemicellulose, pectin, proteins and peptides (Dodd et al. 2010; Golder et al. 2014). They are known for their 

xylanolytic properties in the rumen and thus play an important role in fiber degradation (Dodd et al. 2010).
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Fibrobacteres were predominantly represented in microbiota attached to the forages with the highest NDF contents 

[e.g. CR and Salicornia (SC)]. They are known to produce a battery of cellulolytic enzymes capable of degrading 

cellulose as a sole carbon source (Flint et al. 2008; Suen et al. 2011). The association of forage NDF content with the 

prevalence of Fibrobacter is also recently observed in the cow rumen microbiota (Liu et al. 2016). In contrast to 

Fibrobacteres, the genera Clostridium, Shuttleworthia and Ruminococcus tended to attach the forages with limited 

NDF and cellulose contents. This is consistent with previous findings on the preference of Ruminococcus species for 

attachment to high quality sugar-rich hays (Klevenhusen et al. 2017). Ruminococcaceae showed a strong negative 

correlation with total DM contents in the forages as well. Shinkai et al. (2010) also reported that members of 

Fibrobacteres, including F. succinogenes, abundantly attached to less digestible fibers while those of 

Ruminococcaceae, specifically R. flavefaciens, preferred easily digestible fibers and thus were infrequently detected 

in the stem parts of hays. The rate and extent of fiber degradation by F. succinogenes are also greater than R. albus 

and R. flavefaciens (Kobayashi et al. 2008). Early microscopy analysis indicated that R. albus is less commonly 

attached to plant cell walls while F. succinogenes forms extensive microcapsula enveloping the cell walls (Chesson 

et al. 1986). The community of unclassified Ruminococcaceae tended to linearly expand in AP, KS and SC following 

their rumen incubation. This finding suggested that the degradation of surface accessible fibers turned forage residues 

into favored substrates for the attachment by species of Ruminococcaceae. A declined abundance of species of 

Ruminococcus has been reported in the cow rumen when the starch content of diet was increased (Zened et al. 2013). 

Ruminococcus spp. have been equipped with specialized mechanisms for fiber adhesion and degradation, in which 

multiple carbohydrate degrading enzymes assemble into multienzyme cellulosome complexes capable of attachment 

to and degradation of polysaccharides in various plant cell walls (Bayer et al. 2004; Doi and Kosugi 2004).

Recently, Huws et al. (2016) reported that microbial colonization of perennial ryegrass occurred at two successive 

stages: The primary (the first 1-2 h after its rumen entry) and the secondary phases (4-8 h). It was the secondary phase, 

during which the maximal DM degradation was achieved and the proportion of Succinivibrio spp. decreased while 

those of Pseudobutyrivibrio, Roseburia and Ruminococcus spp. increased. Piao et al. (2014) also observed that the 

populations of Pseudobutyrivibrio and Ruminococcus spp. increased during their secondary colonization to 

switchgrass in the Friesian cow rumen. The microbial communities attached to feeds during the primary phase were 

believed to utilize soluble and easily accessible nutrients while those colonized feeds during the secondary phase were 

considered to be the true lignocellulose degraders (Huws et al. 2016; Liu et al. 2016). In this study, an increased 

prevalence of Butyrivibrio was noted in CR. Butyrivibrio spp. are known for their proteolytic, hemicellulolytic and 

biohydrogenating activities (Krause et al. 2003). Liu et al. (2016) reported a strong positive correlation between the 

abundance of Butyrivibrio spp. and the crude protein contents in the rice straw and alfalfa hay, suggesting their 

preference for the attachment to proteinaceous components of the feeds.

In summary, our results demonstrated that physicochemical compositions of the forages, more specifically their 

cellulose contents, were among the major factors influencing microbial attachments and thus lignocellulose 

degradation in the cattle rumen. No taxonomic lineage was found to be specific of a particular forage, suggesting that 

most rumen microbes had an inherent tendency for attachment to lignocellulosic substrates. However, differential 
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attachments to the forages by rumen microbiota suggested that the physicochemical properties were the key factors 

influencing the rate of microbial attachment. Our results also revealed that members of the rumen microbiota competed 

for their attachments to the forages with different lignocellulose compositions mostly during the initial hours of the 

rumen incubation. However, after the degradation of easily digestible components in the forages, relatively uniform 

microbial communities developed on their surface.

It should be noted that the bacterial community composition detected in each forage at each sampling interval may 

not necessarily reflect the actual abundance of microbes due to an inherent bias in sample collection, processing and 

storage as well as DNA extraction and PCR amplification, which may cause over- or under-representation of some 

taxa. For example, a recent comparative analysis of various DNA extraction methods used in rumen microbiome 

analyses argued that DNA extraction method can have an adverse effect on the community composition of rumen 

samples and may associate with an increased or decreased abundance of some specific taxa (Henderson et al. 2013). 

Particularly, the inclusion of a physical lysis step using bead-beating method increased the efficacy of DNA extraction 

from Gram-positive bacteria (Knudsen et al. 2016). The extent to which our DNA extraction method, in which the 

physical lysis step was not included, affected community composition of the forage-attached microbiota was unknown. 

In addition, the high number of PCR cycles may increase the number of PCR artifacts and bias the microbial 

compositions.
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Figure legends

Figure 1. Differences among the six forages in dry matter (DM) and percentages of neutral detergent fiber (NDF), 

acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose and hemicellulose before (0 h) and after 24, 48, 72, 

and 96 h of the rumen incubation. The solid circle and error bar in each boxplot show mean and standard deviation, 

respectively. Statistically significant differences were determined using one-way ANOVA. Means were compared 

using Duncan’s multiple range test and are labelled with different letters at each sampling interval for p < 0.05. AP, 

camelthorn; CR, common reed; DP, date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 2. Beta diversity analysis of rumen microbial communities attached to the six forages during the rumen 

incubation. PCoA plots show the distribution of samples based on weighted Unifrac distance matrix, in which samples 

are grouped according to the forages (a) and the sampling intervals (b). Significant differences were tested using 

PERMANOVA with a p-value cutoff 0.01. The percentage of variation explained by each principle coordinate is 

indicated next to the corresponding axis. The homogeneity of dispersions was also tested for this diversity measure to 
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examine variance differences between the forages (c) and the sampling intervals (d). Significant differences were 

determined using the betadisper function of R package vegan v2.5-5 at 999 permutations. P-values < 0.05 were 

considered statistically significant. For each treatment, data in triplicate representing three separate bags, were 

included. AP, camelthorn; CR, common reed; DP, date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 3. (a) The proportions of reads (mean ± SD) assigned to the major bacterial phyla (n = 7) detected in the forage-

attached microbial communities. The relative abundances were calculated based on the proportion of reads assigned 

to each phylum in the rarefied OTU table at an even sequencing depth of 4660 reads. (b) Box plots show relative 

abundance of phyla differentially attached to the forages. Statistically significant differences were calculated based on 

the analysis of composition of microbes (ANCOM) using p < 0.05 following Duncan’s multiple range test for 

comparison of the means. Center lines indicate the median value, boxes the interquartile range and red squares the 

mean. Means with different letters differ at Bonferroni corrected p < 0.05. AP, camelthorn; CR, common reed; DP, 

date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 4. The log of relative abundances of genera differentially attached to the six forages following the rumen 

incubation. Differential abundances were statistically tested using ANCOM with a p-value cutoff < 0.05. Means were 

compared using Duncan’s multiple range test only accepting Bonferroni corrected p-values < 0.05. Boxplots labeled 

with different letters show statistically significant differences. Center line represents median value. AP, camelthorn; 

CR, common reed; DP, date palm; KS, Kochia; RS, rice straw; and SC, Salicornia.

Figure 5. The average relative abundances of taxa (genus level) differentially represented in microbial communities 

attached to the six forages during the rumen incubation (up to 96 h with 24 h intervals). Statistically significant 

differences were calculated using ANCOM and means were compared using Duncan’s multiple range test. Error bars 

represent standard deviations and their lengths are adjusted at 95% confidence interval. Means with different letters 

are statistically significant at Bonferroni corrected p < 0.05. No taxa were found to be differentially represented in DP. 

AP, camelthorn; CR, common reed; KS, Kochia; RS, rice straw; and SC, Salicornia. “Un” refers to unclassified.

Supplementary materials

Figure S1.

Changes in DM contents and percentages of NDF, ADF, ADL, cellulose and hemicellulose in six forages during the 

rumen incubation. The solid circle in each boxplot shows mean and error bars represent standard deviation. 

Statistically significant differences were determined using one-way ANOVA. Means were compared using Duncan’s 

multiple range test and labelled with different letters for p < 0.05.

Figure S2.

Alpha diversity analysis through rarefaction plots. (a) Rarefaction curves showing the increase in number of observed 

OTUs; (b) Species richness (number of observed OTUs + number of unobserved OTUs, Chao1); (c) Shannon; and (d) 

Simpson diversity indices on Y-axis as a function of the number of reads sampled on X-axis.

Figure S3.
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Alpha diversity indices of rumen microbiota attached to the six forages with different lignocellulosic compositions at 

24, 48, 72 and 96 hours of the rumen incubation. Alpha diversity indices were measured based on OTUs present at an 

even sequencing depth of 4,660 reads (corresponding to the sequencing depth of the sample with the lowest number 

of reads) in all samples. Statistically significant differences were determined using one-way ANOVA and means were 

compared by Duncan’s multiple range test. * p value < 0.05, ** p value < 0.01 and *** p value < 0.001.

Figure S4.

Alpha diversity analysis of rumen microbial communities attached to the six forages during the rumen incubation. The 

OTU table for each forage was sampled at an even sequencing depth (n = 4660) and diversity measures were calculated 

using plot_richness function of R package phyloseq and visualized using geom_boxplot function of R package 

ggplot2. Statistically significant differences were calculated using one-way ANOVA at p-value cutoff of 0.05. 

Differences between means were determined using Duncan’s multiple range test in PAST v3.26. * p value < 0.05, ** 

p value < 0.01 and *** p value < 0.001.

Figure S5.

The proportions of reads affiliated to OTUs at the taxonomic level of family in the six forages during the rumen 

incubation. Data for each sampling interval is the mean of three biological replicates corresponding to three bags 

retrieved one each from the three cannulated bulls. For each forage, the OTU table is rarefied to the sequencing depth 

of the sample with the lowest number of reads.
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