1,263 research outputs found
Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix Gordejevii and Caragana Microphylla
The information on transpiration is vital for sustaining fragile ecosystem in arid/semiarid environment, including the Horqin Sandy Land (HSL) located in northeast China. However, such information is scarce in existing literature. The objectives of this study were to: (1) measure sap flow of selected individual stems of two sand-fixing plants, namely Salix gordejevii and Caragana microphylla, in HSL; and (2) upscale the measured stem-level sap flow for estimating the community-level transpiration. The measurements were done from 1 May to 30 September 2015 (i.e., during the growing season). The upscaling function was developed to have one dependent variable, namely sap flow rate, and two independent variables, namely stem cross-sectional area of Salix gordejevii and leaf area of Caragana microphylla. The results indicated that during the growing season, the total actual transpiration of the Salix gordejevii and Caragana microphylla communities was found to be 287 31 and 197 24 mm, respectively, implying that the Salix gordejevii community might consume 1.5 times more water than the Caragana microphylla community. For this same growing season, based on the Penman-Monteith equation, the total actual evapotranspiration for these two communities was estimated to be 323 and 229 mm, respectively. The daily transpiration from the upscaling function was well correlated with the daily evapotranspiration by the Penman-Monteith equation (coefficient of determination R2 0.67), indicating the applicability of this upscaling function, a useful tool for managing and restoring sand-fixing vegetations. 2017 by the authors
Preparation and Evaluation of Intravaginal Ring Containing Drospirenone
In the present study, we investigated the feasibility of the vaginal administration of drospirenone silicone IVR. The in vitro release characteristics of matrix-type and reservoir-type IVR were compared under sink conditions in 21 days. At the same time, API excipients compatibility and preformulation study was performed by HPLC, IR, and DSC methods. Biocompatibility of reservoir system was evaluated by tolerability on tissue level in rats. It was found that, under strong light exposure, high temperature, and high humidity conditions, drospirenone and excipients had no significant interactions. The daily release of reservoir-type IVR was about 0.5 mg/d sustaining 21 days, which significantly decreased the burst effect compared with the matrix system. When drospirenone was modified by the PVPk30 in the reservoir system formulation, the daily release rate increased to 1.0 mg/d sustaining 21 days. The cumulative release of reservoir-type IVR was fitted to zero release equation. In addition, biocompatibility of drospirenone IVR system in this dosage is safe. It is feasibility feasibile to further developed for safe, convenient, and effective contraceptive drug delivery with reduced dosing interval
Experimental observation of Dirac-like surface states and topological phase transition in PbSnTe(111) films
The surface of a topological crystalline insulator (TCI) carries an even
number of Dirac cones protected by crystalline symmetry. We epitaxially grew
high quality PbSnTe(111) films and investigated the TCI phase by
in-situ angle-resolved photoemission spectroscopy. PbSnTe(111)
films undergo a topological phase transition from trivial insulator to TCI via
increasing the Sn/Pb ratio, accompanied by a crossover from n-type to p-type
doping. In addition, a hybridization gap is opened in the surface states when
the thickness of film is reduced to the two-dimensional limit. The work
demonstrates an approach to manipulating the topological properties of TCI,
which is of importance for future fundamental research and applications based
on TCI
The Origin of the Prompt Emission for Short GRB 170817A: Photosphere Emission or Synchrotron Emission?
The first gravitational-wave event from the merger of a binary neutron star system (GW170817) was detected recently. The associated short gamma-ray burst (GRB 170817A) has a low isotropic luminosity (~1047 erg s−1) and a peak energy E p ~ 145 keV during the initial main emission between −0.3 and 0.4 s. The origin of this short GRB is still under debate, but a plausible interpretation is that it is due to the off-axis emission from a structured jet. We consider two possibilities. First, since the best-fit spectral model for the main pulse of GRB 170817A is a cutoff power law with a hard low-energy photon index (), we consider an off-axis photosphere model. We develop a theory of photosphere emission in a structured jet and find that such a model can reproduce a low-energy photon index that is softer than a blackbody through enhancing high-latitude emission. The model can naturally account for the observed spectrum. The best-fit Lorentz factor along the line of sight is ~20, which demands that there is a significant delay between the merger and jet launching. Alternatively, we consider that the emission is produced via synchrotron radiation in an optically thin region in an expanding jet with decreasing magnetic fields. This model does not require a delay of jet launching but demands a larger bulk Lorentz factor along the line of sight. We perform Markov Chain Monte Carlo fitting to the data within the framework of both models and obtain good fitting results in both cases
Mass Flow Measurement of Gas-Liquid Two-Phase CO in CCS Transportation Pipelines using Coriolis Flowmeters
Carbon Capture and Storage (CCS) is a promising technology that stops the release of CO from industrial processes such as electrical power generation. Accurate measurement of CO flows in a CCS system where CO flow is a gas, liquid, or gas-liquid two-phase mixture is essential for the fiscal purpose and potential leakage detection. This paper presents a novel method based on Coriolis mass flowmeters in conjunction with least squares support vector machine (LSSVM) models to measure gas-liquid two-phase CO flow under CCS conditions. The method uses a classifier to identify the flow pattern and individual LSSVM models for the metering of CO2 mass flowrate and prediction of gas volume fraction of CO, respectively. Experimental work was undertaken on a multiphase CO flow test facility. Performance comparisons between the general LSSVM and flow pattern based LSSVM models are conducted. Results demonstrate that Coriolis mass flowmeters with the LSSVM model incorporating flow pattern identification algorithms perform significantly better than those using the general LSSVM model. The mass flowrate measurement of gas-liquid CO is found to yield errors less than ±2% on the horizontal pipeline and ±1.5% on the vertical pipeline, respectively, over flowrates from 250 kg/h to 3200 kg/h. The error in the estimation of CO gas volume fraction is within ±10% over the same range of flow rates
- …