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A B S T R A C T

Carbon Capture and Storage (CCS) is a promising technology that stops the release of CO2 from industrial

processes such as electrical power generation. Accurate measurement of CO2 flows in a CCS system where CO2

flow is a gas, liquid, or gas-liquid two-phase mixture is essential for the fiscal purpose and potential leakage

detection. This paper presents a novel method based on Coriolis mass flowmeters in conjunction with least

squares support vector machine (LSSVM) models to measure gas-liquid two-phase CO2 flow under CCS condi-

tions. The method uses a classifier to identify the flow pattern and individual LSSVM models for the metering of

CO2 mass flowrate and prediction of gas volume fraction of CO2, respectively. Experimental work was under-

taken on a multiphase CO2 flow test facility. Performance comparisons between the general LSSVM and flow

pattern based LSSVM models are conducted. Results demonstrate that Coriolis mass flowmeters with the LSSVM

model incorporating flow pattern identification algorithms perform significantly better than those using the

general LSSVM model. The mass flowrate measurement of gas-liquid CO2 is found to yield errors less than± 2%

on the horizontal pipeline and±1.5% on the vertical pipeline, respectively, over flowrates from 250 kg/h to

3200 kg/h. The error in the estimation of CO2 gas volume fraction is within± 10% over the same range of flow

rates.

1. Introduction

Accurate measurement of CO2 is essential in the practical deploy-

ment of the carbon capture and storage (CCS) technology. Pipeline

networks are regarded as the most effective solution to the long dis-

tance onshore transportation of CO2 from capture facilities to storage

sites. However, the measurement of CO2 flow in CCS pipelines is more

challenging than metering the oil, gas or multiphase flow in the air and

gas industry due to the readily varying physical properties of CO2. The

phase boundaries in the CO2 phase diagram are close to each other and

under ambient conditions. In this case, unstable temperature or pres-

sure of CO2 flow may result in significant variations in the CO2 physical

characteristics (Hunter and Leslie, 2009). In addition, presence of im-

purities such as N2 and CH4 may also affect the phase properties of CO2

flow. It is thus challenging to accurately measure and subsequently

control CO2 flows in CCS pipelines. Orifice plate flowmeters and turbine

flowmeters have been applied for general single-phase CO2 measure-

ment in tertiary recovery projects for some years (Hunter and Leslie,

2009). However, it is reported that the Orifice flowmeters for the

measurement of slugging gas-liquid flow at the well-head generate the

maximum error of 80% (Green et al., 2008). Coriolis mass flowmeters

are capable of directly metering mass flowrate of the fluid regardless of

its physical state and providing density and temperature. Application of

Coriolis mass flowmeters to the measurement of single-phase gas/liquid

CO2 flow have been conducted (Adefila et al., 2015; Adefila et al., 2017;

Lin et al., 2014). Recently, Coriolis flowmeters in conjunction with a

theoretical bubble-effect equation, a trained neural network and a fuzzy

inference system with additional flow sensing devices were proposed to

measure air-water flow (Wang and Baker, 2014; Kunze et al., 2014;

Hemp and Sultan, 1989; Liu et al., 2001; Safarinejadian et al., 2012;

Hou et al., 2014; Xing et al., 2014; Wang et al., 2017a,b). However, CO2

two-phase flow is more challenging to measure compared to air-water

flow due to the transitions between different phases depending on the

environmental conditions. Although a Coriolis mass flowmeter with a

neural network model was evaluated with slugging gas-liquid CO2 flow,

the error was found up to± 5% (Green et al., 2008). However, the gas

component of the CO2 flow was not measured and the impact of dif-

ferent flow regimes was not considered. Morevoer, significant
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challenges are to overcome for the direct flow measurement techniques

to achieve 1.5% measurement uncertainty specified in the European

Union − Emissions Trading Scheme under all expected CCS conditions

(TUV NEL, 2009).

In this study, Coriolis mass flowmeters (KROHNE OPTIMASS 6400

S15) are applied to measure gas-liquid CO2 flow with different flow

regimes and their performance evaluated under a range of CCS condi-

tions. This paper aims to assess the effect of flow regimes on the per-

formance of Coriolis mass flowmeters and improve the measurement

accuracy of the total CO2 mass flowrate and CO2 gas volume fraction

under two-phase flow conditions. An FP_LSSVM (Flow Pattern based

Least Squares Support Vector Machine) model is developed to identify

the flow regime and then measure CO2 mass flowrate and gas volume

fraction. For purpose of a direct comparison, a general LSSVM model is

also developed with the same experimental data covering different flow

regimes. The LSSVM and FP_LSSVM models are compared in terms of

measurement accuracy under a range of flow conditions.

2. Methodology

2.1. Flow pattern based data-driven model

The flow pattern based data-driven model, as shown in Fig. 1, in-

cludes a model for flow pattern identification and individual correction

model for CO2 mass flowrate and prediction model for CO2 gas volume

fraction. The Coriolis mass flowmeter provides apparent mass flowrate

and observed density of the two-phase fluid by analyzing the internal

vibration signals from the measuring tubes. Despite that the apparent

mass flowrate and observed density from the flowmeter are erroneous

under two-phase flow conditions (unlike under single-phase flow con-

ditions), these two parameters still reflect the variations in the actual

CO2 mass flowrate and gas quantity. The outputs of the Coriolis mass

flowmeter and the differential pressure (DP) transducer are applied to

identify the flow pattern and then the corresponding correction and

prediction models are selected to yield corrected CO2 mass flowrate and

estimated gas volume fraction.

The flow pattern identification model is in effect a classifier whilst

the correction and prediction models act as regression functions. In this

study, the data-driven models are developed based on LSSVM which is a

least squares version of support vector machine. This modified SVM

(Suykens and Vandewalle, 1999) incorporating the least squares pro-

cedure obtains the optimal solution through solving a set of linear

equations instead of a convex quadratic programming problem in the

classical SVM. As a result, the computational complexity of LSSVM is

significantly reduced, when compared to SVM (Huang et al., 2012).

2.2. LSSVM model for classification

The basic idea of SVM for solving a two-class classification problem

is to map the data into a high-dimensional space and then construct an

optimal separating hyperplane in this space (Cortes and Vapnik, 1995).

Instead of solving a quadratic programming problem, equality con-

straints for the classification problem have been considered. As a result,

the optimization problem is simplified to resolve several linear

equations (Suykens and Vandewalle, 1999). Given n training samples

X* = (x1, x2, …, xn) and the desired output y, each input sample is a

vector x = (x1, x2, …, xm)
T including m variables. The term

ω

2 is de-

fined as the distance between the two different classes in the feature

space, where ω is a weight vector. To maximize the separating margin

and to minimize the training error is equivalent to

∑+
+ = − = …

=
ω γ e

y φ b eω x

min

s.t. ( , ( ) ) 1 , i 1, , n

ω e b
i

n

i

i i i

, ,

1

2
2 1

2
1

2

(1)

where γ is a penalty parameter that balances model complexity and

approximation accuracy, ei is the ith error variable and b is a bias. φ x( )i
is a nonlinear function which maps the data into the feature space. The

Lagrangian function is given by:

∑ ∑= + − < > + − +
= =

ω ω, φ xL γ e α y b e
1

2

1

2
[ ( ( ) ) 1 ]i

i

n

i

i

n

i i i
2

1

2

1 (2)

where αi (i=1, …, n) are Lagrange multipliers. The optimality condi-

tions for Eq. (2) are refined as:
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Eq. (3) can be written as the solution to the following set of linear

equations:
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Mercer’s condition can be used to the matrix H = ZZT, where
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K(xi, xk) represents a kernel function. The decision function of the two-

class classifier is described as
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The kernel function K(x, xi) used to develop the LSSVM models in

this study is RBF (Radial Basis Function), which is defined as:

Fig. 1. Principle of the flow pattern based

model for mass flow metering and gas vo-

lume fraction predication on horizontal or

vertical pipes.
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The parameter σ in the RBF kernel function and the penalty para-

meter γ in the LSSVM model are determined by cross validation in the

training process.

2.3. LSSVM model for regression

LSSVM solves the nonlinear regression problem by mapping the

data into a high-dimensional feature space and then developing a linear

regression model in this space (Drucker et al., 1997). Given training

samples X*=(x1, x2, …, xn) and the desired output y, the optimization

problem is defined as
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where γ is a penalty parameter that balances model complexity and

approximation accuracy, ei is the ith error variable and b is a bias. The

Lagrangian function is determined as
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where αi (i=1,…,n) are the Lagrange multipliers. The conditions for

optimality are given by:
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The solutions to α and b can be given in a group of linear equations

by eliminating the variables ω and ei:
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tity matrix. The Mercer condition is applied:
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Finally, the LSSVM regression model can be obtained:
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3. Experimental tests

As shown in Fig. 2, there are two independent Coriolis mass flow-

meters on the liquid CO2 flow section and gas CO2 flow section, re-

spectively, to provide references. The reference Coriolis flowmeters are

capable of offering the CO2 liquid measurement uncertainty of 0.16%

and CO2 gas measurement uncertainty of 0.3%. In the test section, two

Coriolis flowmeters (KROHNE OPTIMASS 6400 S15) were installed in

horizontal and vertical positions, respectively. These meters together

with the developed data-driven models are tested with gas-liquid two-

phase CO2 flow. Different installation orientations of the Coriolis mass

flowmeters are taken into account with regard to the impacts of

buoyancy and gravity on mixed fluid.

In order to achieve liquid CO2 at the single phase section and stable

gas-liquid mixture at the test section, the fluid temperature was con-

trolled between 19 °C and 21 °C through a cooling system and the

pressure ranged from 54 bar to 58 bar. The liquid CO2 mass flowrate

was ranging from 250 kg/h to 3200 kg/h whilst the gas CO2 flowrate

from 0 to 330 kg/h. As acquiring a high volume of training data is not

practical in addition to the potential problem of overfitting in the data-

driven modelling, the training data should be representative of the

whole range of data including the maximum and minimum liquid

flowrates and cover the typical flow regimes to be tested. Since the

error trend for stratified flow is more complicated than bubbly flow, the

Fig. 2. Meters under test and reference meters on the

test rig.

Fig. 3. Experimental test points of gas-liquid CO2 two-phase flow.
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training data for stratified flow should be collected with smaller in-

tervals in terms of flowrates (Fig. 3) while reasonably greater intervals

are applied for bubbly flow. In order to evaluate the generalization

capability of the data-driven models, a set of data which are different

from the training data and previously unseen by the trained data

models are taken as test data. As shown in Fig. 3, the training data

include 232 data sets (liquid flowrates: 250 kg/h, 400 kg/h, 700 kg/h,

800 kg/h, 1050 kg/h, 1300 kg/h, 1800 kg/h, 2300 kg/h, 2800 kg/h

and 3200 kg/h) whilst 89 data sets (liquid flowrates: 300 kg/h, 550 kg/

h, 900 kg/h, 1550 kg/h, 2050 kg/h, 2550 kg/h and 3050 kg/h) were

taken for test purposes. The test data were acquired on the same test rig

but at different liquid and gas flowrates. The environmental conditions

under which the test data were collected are the same as the training

data. The test matrix is divided into three types according to the flow

patterns. The typical flow patterns on the horizontal pipe include

stratified flow, intermittent flow and dispersed flow whilst bubbly flow,

intermittent flow and dispersed flow were observed on the vertical pipe.

4. Results and discussion

4.1. Analysis of original errors

The typical original errors of the Coriolis mass flowmeters are

plotted in Fig. 4. The error presented is against the liquid CO2 mass

flowrate and gas CO2 entrainment since gas CO2 mass flowrate cannot

be ignored at higher pressure. The gas volume fraction here indicates

the gas entrainment in the upstream of the tested Coriolis flowmeter. It

must be pointed out that relative error is used in this paper instead of

measurement uncertainty (TUV NEL, Good Practice Guide) in order to

quantify the improvement in measurement accuracy of the proposed

method over the original meter output. Measurement uncertainty ori-

ginates from a range of sources such as accuracy of the instrument,

environmental effect, operator skills, the process of taking the mea-

surement and fluctuations of the measurand. Combining all the un-

certainty components yields the overall uncertainty in flow measure-

ment (TUV NEL, Good Practice Guide). Since the accuracy of the

instrument is the dominant component affecting the measurement un-

certainty under two-phase flow conditions, this paper focuses on the

accuracy evaluation of the instrument (Coriolis mass flowmeter) in

terms of relative error.

As shown in Fig. 4, when the liquid flowrate is less than 800 kg/h,

stratified flow can be seen from the horizontal pipe. As gas entrainment

increases, the error trend goes up and generates positive errors. How-

ever, the flowmeter in vertical orientation yields smaller errors under

the same conditions. From 800 kg/h to 1000 kg/h, the flow is observed

as intermittent flow. As gas CO2 increases, the two flowmeters both

yield negative errors under the condition of dispersed flow. Different

kinds of flow patterns present different error trends because of the in-

herent chaotic characteristic of gas phase distributions in the liquid

phase. The installation orientation of the Coriolis flowmeter affects the

bubble distribution in the Coriolis sensing tubes. The Coriolis sensing

tubes, in horizontal position, are in a downward position and thus

bubbles could be trapped at the inlet side with low flowrates because of

the buoyancy effect. For this reason, the flow errors from Coriolis

Fig. 4. Original errors from Coriolis mass flowmeters.

(a) Horizontal orientation. (b) Vertical orientation.
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flowmeters under the test conditions are positive or negative and pre-

sent different trends for horizontal and vertical orientations.

4.2. LSSVM models

Two LSSVM models for the correction of the total CO2 mass flowrate

and prediction of the CO2 gas volume fraction are developed, respec-

tively. The models accept four variables (apparent mass flowrate, ob-

served density, damping and DP) which are determined by input vari-

able selection methods (Wang et al., 2017a,b). The penalty parameters

C and γ in the LSSVM models are optimized through five-fold cross

validation. Through a comparison of the performances of LSSVM among

four different kernel functions (including linear, polynomial, RBF and

sigmoid kernel functions), the model with RBF kernel function gen-

erates the best performance. The results in the following study are from

the model with RBF kernel function. The original errors and the cor-

rected errors of CO2 mass flowrate are depicted in Fig. 5. It can be seen

that the original errors at the flowrates of 300 kg/h and 550 kg/h are

very different from the rest because of the differences in flow patterns.

After the correction with LSSVM models, the errors of total CO2 mass

Fig. 5. Relative errors of CO2 mass flowrate from LSSVM models.

(a) Original errors on horizontal installation (b) Corrected errors from the LSSVM model. (c) Original errors on vertical installation (d) Corrected errors from the LSSVM model.

Fig. 6. Relative errors of gas volume fraction from LSSVM models.

(a) Predicted errors on horizontal installation (b) Predicted errors on vertical installation.
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flowrate on horizontal and vertical pipes are significantly reduced,

except that some points are overcorrected at flowrates of 900 kg/h and

2050 kg/h. Most of the corrected errors in Fig. 5 are within the± 2%

error lines.

The LSSVM prediction models for gas volume fraction takes ap-

parent mass flowrate, observed density and DP as inputs. Fig. 6 shows

that some of the errors from LSSVM models are still large, especially at

the gas volume fraction less than 10%. As gas CO2 increases, the pre-

dicted errors are all within 10% (the red dash lines in Fig. 6). Therefore,

it is evident that the performance of the prediction model depends on

the flow pattern, especially at the flowrates of 900 kg/h and 3050 kg/h,

under which the flow is either intermittent or dispersed.

4.3. Flow pattern based LSSVM model

In order to further reduce the impact of flow patterns on the mea-

surement from Coriolis mass flowmeters in conjunction with data-

driven models, flow pattern recognition is included in the measurement

system and individual correction and prediction models are developed

for individual flow patterns. Previous studies on input variable selection

(Wang et al., 2017a,b) have shown that the variables, including ap-

parent mass flowrate, observed density, damping and DP, have more

significance to estimate the total CO2 mass flowrate and CO2 gas vo-

lume fraction which are closely related to the flow pattern. Conse-

quently, these four variables are taken as inputs to the flow pattern

recognition model. An LSSVM based flow pattern recognition model is

developed to act as the flow pattern classifier. For test purposes, there

are 19 data indicating stratified flow in the horizontal pipe and bubbly

flow in the vertical pipe, respectively, 34 data from intermittent flow

and 36 data from dispersed flow on both horizontal and vertical pipes,

respectively. The results of flow pattern recognition are summarised in

Table 1. Due to the high performance of LSSVM for classification, all the

test points are correctly classified into the corresponding flow patterns

and result in 100% successful recognition rate.

Once the test point is classified into a specific flow pattern, the

corresponding correction and prediction models are determined to yield

the corrected CO2 mass flowrate and predicted gas volume fraction. The

corrected errors of the total CO2 mass flowrate are shown in Fig. 7. The

red, green and blue markers represent the test points from Types I, II

and III, respectively. It is obvious that the test points at Types II and III

are all within±2% for the horizontal installation and±1% for the

vertical installation. Meanwhile, the errors of mass flowrate at Type I

are largely reduced in comparison with the results from the LSSVM

models. The maximum errors at low flowrates are all within±5%. The

correction model for mass flow measurement on the vertical installation

outperforms the horizontal one at the flowrates of 300 kg/h and

550 kg/h and results in relative errors within±2%.

The relative errors of gas volume fraction from the flow pattern

based LSSVM models are plotted in Fig. 8. Although the errors are still

Fig. 7. Relative errors of CO2 mass flowrate from FP_LSSVM model.

(a) Corrected errors for horizontal installation (b) Corrected errors on vertical installation.

Fig. 8. Relative errors of gas volume fraction from FP_LSSVM model.

(a) Predicted errors on horizontal installation (b) Predicted errors on vertical installation.

Table 1

Results of flow pattern recognition.

Horizontal flow

patterns

Success rate Vertical flow patterns Success rate

Stratified flow (19) 19 Bubbly flow (19) 19

Intermittent flow (34) 34 Intermittent flow (34) 34

Dispersed flow (36) 36 Dispersed flow (36) 36

Overall success rate 100% (89/

89)

Overall success rate 100% (89/89)
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large at the CO2 gas volume fraction lower than 5%, the errors at other

test points are within± 10%.

4.4. Results comparison

NRMSE results from the LSSVM and flow pattern based LSSVM

(FP_LSSVM) models are summarized in Table 2. CO2_M_H and CO2_M_V

present the correction models of mass flowrate. Likewise, CO2_G_H and

CO2_G_V indicate the prediction models of gas volume fraction on

horizontal and vertical sections, respectively. The errors of total CO2

mass flowrate have been significantly reduced with the use of correc-

tion models. For the Coriolis mass flowmeter in horizontal orientation,

NRMSE is reduced from 2.82% to 1.05% and 0.80% by using LSSVM

model and FP_LSSVM model, respectively. Meanwhile, for the Coriolis

mass flowmeter in vertical orientation, NRMSE is reduced from 3.69%

to 1.77% and 0.51% with LSSVM and FP_LSSVM models, respectively.

Moreover, the NRMSEs from the FP_LSSVM models are much smaller

than the LSSVM models for both installation orientations.

As for the estimation of CO2 gas volume fraction, the results from

the models demonstrate that the FP_ LSSVM models also outperform the

LSSVM models. The NRMSEs from the LSSVM models are around 10%

while those from the FP_LSSVM models are 8.11% and 4.32% for hor-

izontal and vertical installations, respectively.

5. Conclusions

The performance of Coriolis flowmeters with flow pattern based

LSSVM models has been assessed with gas-liquid two-phase CO2 flow. A

range of experimental tests were conducted on a gas-liquid two-phase

CO2 test rig. Experimental results have demonstrated that the relative

errors from Coriolis mass flowmeters in conjunction with the correction

models are mostly within± 2% in horizontal installation and±1.5%

in vertical position for flowrates ranging from 250 kg/h to 3200 kg/h.

The proposed measurement system has shown significant improvement

for the measurement of gas-liquid CO2 flow. The predicted errors of gas

volume fraction are no greater than±10% over the same range of

flowrates with GVF down to less than 5%. In comparison with the

LSSVM models, the flow pattern based LSSVM models have produced

much smaller errors in the prediction of gas volume fraction. The re-

sults presented have confirmed that the applicability of Coriolis flow-

meters to single-phase CO2 flow measurement has been effectively ex-

tended to two-phase CO2 flow metering under CCS conditions.
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