6,445 research outputs found

    New Data on the Topside Electron Density Distribution

    Get PDF
    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program

    The non-ballistic superluminal motion in the plane of the sky-II

    Full text link
    The model of non-ballistic jet motion proposed in 2008 provides a simple explanation to the inward jet motion and bent jet. Recently, evidences of such a non-radial motion increase rapidly, and more complicated morphologies appear. On the other hand, the ballistic plus precession model likely holds in majority samples of jet motion. This paper discusses the relationship between the ballistic and non-ballistic model of jet motion, which suggests that the interaction of ejectors with ambient matter can produce knots at different stages of evolution and hence different separations to the core. And as a jet precesses, knots produced between the core and the deceleration radius result in spiral pattern expected by the model of ballistic plus precession; and knots generated at the deceleration radius display non-radial motion such as bent jet or oscillation of ridge-line. This paper develops the first non-ballistic model in four aspects. Firstly, it provides a numerical simulation to the production of multi-knot for a precessing jet. Secondly, it fits the precession behavior of multi-knot and interprets the oscillation of ridge lines like S5 1803+784. Thirdly, it gives an unified interpretation to the bent jet applicable to both multi-knot and single knot. And fourthly, the problem of very large numbers of observed outward motions as opposed to the inward ones is addressed in a new scope.Comment: 9 pages, 6 figures, accepted by MNRA

    A geometric description of the non-Gaussianity generated at the end of multi-field inflation

    Full text link
    In this paper we mainly focus on the curvature perturbation generated at the end of multi-field inflation, such as the multi-brid inflation. Since the curvature perturbation is produced on the super-horizon scale, the bispectrum and trispectrum have a local shape. The size of bispectrum is measured by fNLf_{NL} and the trispectrum is characterized by two parameters Ļ„NL\tau_{NL} and gNLg_{NL}. For simplicity, the trajectory of inflaton is assumed to be a straight line in the field space and then the entropic perturbations do not contribute to the curvature perturbation during inflation. As long as the background inflaton path is not orthogonal to the hyper-surface for inflation to end, the entropic perturbation can make a contribution to the curvature perturbation at the end of inflation and a large local-type non-Gaussiantiy is expected. An interesting thing is that the non-Gaussianity parameters are completely determined by the geometric properties of the hyper-surface of the end of inflation. For example, fNLf_{NL} is proportional to the curvature of the curve on this hyper-surface along the adiabatic direction and gNLg_{NL} is related to the change of the curvature radius per unit arc-length of this curve. Both fNLf_{NL} and gNLg_{NL} can be positive or negative respectively, but Ļ„NL\tau_{NL} must be positive and not less than (65fNL)2({6\over 5}f_{NL})^2.Comment: 19 pages, 4 figures; refs added; a correction to \tau_{NL} for n-field inflation added, version accepted for publication in JCA

    Belowground rhizomes in paleosols:The hidden half of an Early Devonian vascular plant

    Get PDF
    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.National Natural Science Foundation of China [41272018]; Yunnan Key Laboratory for Palaeobiology, Yunnan University [2015DG007-KF04]; Key Laboratory of Economic Stratigraphy and Palaeogeography, Chinese Academy of Sciences (Nanjing Institute of Geology and Palaeontology)SCI(E)[email protected]

    Determining 1āˆ’āˆ’1^{--} Heavy Hybrid Masses via QCD Sum Rules

    Full text link
    The masses of 1āˆ’āˆ’1^{--} charmonium and bottomonium hybrids are evaluated in terms of QCD sum rules. We find that the ground state hybrid in charm sector lies in mHc=4.12āˆ¼4.79m_{H_c}=4.12\sim 4.79 GeV, while in bottom sector the hybrid may situated in mHb=10.24āˆ¼11.15m_{H_b} = 10.24\sim 11.15 GeV. Since the numerical result on charmonium hybrid mass is not compatible with the charmonium spectra, including structures newly observed in experiment, we tempt to conclude that such a hybrid does not purely exist, but rather as an admixture with other states, like glueball and regular quarkonium, in experimental observation. However, our result on bottomonium hybrid coincide with the "exotic structure" recently observed at BELLE.Comment: 15 pages, 5 figures, version to appear in J.Phys.

    Curvaton Dynamics and the Non-Linearity Parameters in Curvaton Model

    Full text link
    We investigate the curvaton dynamics and the non-linearity parameters in curvaton model with potential slightly deviating from the quadratic form in detail. The non-linearity parameter gNLg_{NL} will show up due to the curvaton self-interaction. We also point out that the leading order of non-quadratic term in the curvaton potential can be negative, for example in the axion-type curvaton model. If a large positive gNLg_{NL} is detected, the axion-type curvaton model will be preferred.Comment: 14 pages, 4 figures; refs adde

    Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD)

    Get PDF
    This paper presents a novel formulation for dispersive media computation in finite-difference time-domain (FDTD). Motivated by conventional recursive convolution (RC) methods in handling convolution integral, the method name quadratic RC (QRC) makes improvement in the approximation of electric field in convolution integral. The electric field is approximated by quadratic function determined by the fields at three time steps at current, next and former. Via quadratic interpolation, the convolution integral result is approximated by the linear combination of three electric fields, rather than two fields in trapezoidal RC (TRC) or piecewise linear RC (PLRC) and one field in constant RC (CRC). Because three electric fields are required for the convolution integral, the method needs two more back level storage of the electric fields to fulfill the recursion process. Numerical demonstrations of Debye and Drude slab's transmission and reflection coefficients demonstrate the efficiency and accuracy of the novel method

    An Alternative and Effective HIV Vaccination Approach Based on Inhibition of Antigen Presentation Attenuators in Dendritic Cells

    Get PDF
    BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA) to inhibit suppressor of cytokine signaling (SOCS) 1, a key negative regulator of the JAK/STAT pathway, and investigated the effect of this silencing on the ability of dendritic cells (DCs) to induce anti-HIV-1 immunity. We found that SOCS1-silenced DCs broadly induced enhanced HIV-1 envelope (Env)-specific CD8(+) cytotoxic T lymphocytes and CD4(+) T helper cells, as well as antibody responses, in mice. Importantly, SOCS1-silenced DCs were more resistant to HIV Env-mediated suppression and were capable of inducing memory HIV Env-specific antibody and T cell responses. SOCS1-restricted signaling, as well as production of proinflammatory cytokines such as interleukin-12 by DCs, play a critical role in regulating the anti-HIV immune response. Furthermore, the potency of HIV DNA vaccination is significantly enhanced by coimmunization with SOCS1 siRNA expressor DNA. CONCLUSIONS: This study demonstrates that SOCS1 functions as an antigen presentation attenuator to control both HIV-1-specific humoral and cellular responses. This study represents the first, to our knowledge, attempt to elicit HIV-specific T cell and antibody responses by inhibiting a host's antigen presentation attenuator, which may open a new and alternative avenue to develop effective therapeutic and prophylactic HIV vaccines
    • ā€¦
    corecore