13,558 research outputs found
Power system applications of superconducting magnetic energy storage systems
Author name used in this publication: X. D. XueAuthor name used in this publication: K. W. E. ChengAuthor name used in this publication: D. SutantoRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus
We present a multiwavelength study of an atypical submillimeter galaxy in the
GOODS-North field, with the aim to understand its physical properties of
stellar and dust emission, as well as the central AGN activity. Although it is
shown that the source is likely an extremely dusty galaxy at high redshift, its
exact position of submillimeter emission is unknown. With the new NOEMA
interferometric imaging, we confirm that the source is a unique dusty galaxy.
It has no obvious counterpart in the optical and even NIR images observed with
HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust
SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot
be fully ruled out (at 90% confidence interval). Explaining its unusual
optical-to-NIR properties requires an old stellar population (~0.67 Gyr),
coexisting with a very dusty ongoing starburst component. The latter is
contributing to the FIR emission, with its rest-frame UV and optical light
being largely obscured along our line of sight. If the observed fluxes at the
rest-frame optical/NIR wavelengths were mainly contributed by old stars, a
total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral
analysis suggests that this galaxy harbors a heavily obscured AGN with
N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44
erg/s, which places this object among distant type 2 quasars. The radio
emission of the source is extremely bright, which is an order of magnitude
higher than the star-formation-powered emission, making it one of the most
distant radio-luminous dusty galaxies. The combined characteristics of the
galaxy suggest that the source appears to have been caught in a rare but
critical transition stage in the evolution of submillimeter galaxies, where we
are witnessing the birth of a young AGN and possibly the earliest stage of its
jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for
publication in the A&
Precise analytical modelling magnetic characteristics of switched reluctance motor drives using two-dimensional least squares
Author name used in this publication: X. D. XueAuthor name used in this publication: K. W. E. ChengAuthor name used in this publication: S. L. HoAuthor name used in this publication: D. SutantoRefereed conference paper2002-2003 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice
Since the well-known PT symmetry has its fundamental significance and
implication in physics, where PT denotes the combined operation of
space-inversion P and time-reversal T, it is extremely important and intriguing
to completely classify exotic PT-invariant topological metals and to physically
realize them. Here we, for the first time, establish a rigorous classification
of topological metals that are protected by the PT symmetry using KO-theory. As
a physically realistic example, a PT-invariant nodal loop (NL) model in a 3D
Brillouin zone is constructed, whose topological stability is revealed through
its PT-symmetry-protected nontrivial Z2 topological charge. Based on these
exact results, we propose an experimental scheme to realize and to detect
tunable PT-invariant topological NL states with ultracold atoms in an optical
lattice, in which atoms with two hyperfine spin states are loaded in a
spin-dependent 3D OL and two pairs of Raman lasers are used to create
out-of-plane spin-flip hopping with site-dependent phase. Such a realistic
cold-atom setup can yield topological NL states, having a tunable ring-shaped
band-touching line with the two-fold degeneracy in the bulk spectrum and
non-trivial surface states. The states are actually protected by the combined
PT symmetry even in the absence of both P and T symmetries, and are
characterized by a Z2-type invariant (a quantized Berry phase). Remarkably, we
demonstrate with numerical simulations that (i) the characteristic NL can be
detected by measuring the atomic transfer fractions in a Bloch-Zener
oscillation; (ii) the topological invariant may be measured based on the
time-of-flight imaging; and (iii) the surface states may be probed through
Bragg spectroscopy. The present proposal for realizing topological NL states in
cold atom systems may provide a unique experimental platform for exploring
exotic PT-invariant topological physics.Comment: 11 pages, 6 figures; accepted for publication in Phys. Rev.
Identifying axion conversion in compact star magnetospheres with radio-wave polarization signatures
The axion is well motivated in physics. It solves the strong charge
conjugation-parity reversal problem CP in fundamental physics and the dark
matter problem in astronomy. Its interaction with the electromagnetic field has
been expected but never detected experimentally. Such particles may convert to
radio waves in the environment with a strong magnetic field. Inspired by the
idea, various research groups have been working on theoretical modeling and
radio data analysis to search for the signature of radio signals generated by
the axion conversion in the magnetosphere of compact stars, where the surface
magnetic field as strong as - G is expected. In this work, we
calculate the observational properties of the axion-induced radio signals
(AIRSs) in the neutron star magnetosphere, where both the total intensity and
polarization properties of radio emission are derived. Based on the ray tracing
method, assuming 100% linear polarization of radio waves generated in each
conversion, we compute the polarization emission profile concerning different
viewing angles. We note that plasma and general relativistic effects are
important for the polarization properties of AIRSs. Our work suggests that
AIRSs can be identified by the narrow bandwidth and distinct polarization
features.Comment: 15 pages, 7 figures. Published in Physical Review
Implementing topological quantum manipulation with superconducting circuits
A two-component fermion model with conventional two-body interactions was
recently shown to have anyonic excitations. We here propose a scheme to
physically implement this model by transforming each chain of two two-component
fermions to the two capacitively coupled chains of superconducting devices. In
particular, we elaborate how to achieve the wanted operations to create and
manipulate the topological quantum states, providing an experimentally feasible
scenario to access the topological memory and to build the anyonic
interferometry.Comment: 4 pages with 3 figures; V2: published version with minor updation
- …