20 research outputs found

    Predicting Disease-Related Genes Using Integrated Biomedical Networks

    Get PDF
    Background: Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. However, none of the existing computational approaches is able to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease related gene discovery. Results: We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian Normalization-Supervised Random Walk) to generate and model the edge weights of a new biomedical network that integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery. Conclusions: The experiment results show that SLN-SRW significantly improves the performance of disease gene prediction on both the real and the synthetic data sets

    Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China:lessons learnt and international expert recommendations

    Get PDF
    Tracheal intubation in coronavirus disease 2019 (COVID-19) patients creates a risk to physiologically compromised patients and to attending healthcare providers. Clinical information on airway management and expert recommendations in these patients are urgently needed. By analysing a two-centre retrospective observational case series from Wuhan, China, a panel of international airway management experts discussed the results and formulated consensus recommendations for the management of tracheal intubation in COVID-19 patients. Of 202 COVID-19 patients undergoing emergency tracheal intubation, most were males (n=136; 67.3%) and aged 65 yr or more (n=128; 63.4%). Most patients (n=152; 75.2%) were hypoxaemic (Sao2 <90%) before intubation. Personal protective equipment was worn by all intubating healthcare workers. Rapid sequence induction (RSI) or modified RSI was used with an intubation success rate of 89.1% on the first attempt and 100% overall. Hypoxaemia (Sao2 <90%) was common during intubation (n=148; 73.3%). Hypotension (arterial pressure <90/60 mm Hg) occurred in 36 (17.8%) patients during and 45 (22.3%) after intubation with cardiac arrest in four (2.0%). Pneumothorax occurred in 12 (5.9%) patients and death within 24 h in 21 (10.4%). Up to 14 days post-procedure, there was no evidence of cross infection in the anaesthesiologists who intubated the COVID-19 patients. Based on clinical information and expert recommendation, we propose detailed planning, strategy, and methods for tracheal intubation in COVID-19 patients

    Towards Gene Function Prediction via Multi-Networks Representation Learning

    No full text
    Multi-networks integration methods have achieved prominent performance on many network-based tasks, but these approaches often incur information loss problem. In this paper, we propose a novel multi-networks representation learning method based on semi-supervised autoencoder, termed as DeepMNE, which captures complex topological structures of each network and takes the correlation among multinetworks into account. The experimental results on two realworld datasets indicate that DeepMNE outperforms the existing state-of-the-art algorithms

    An online tool for measuring and visualizing phenotype similarities using HPO

    No full text
    Abstract Background The Human Phenotype Ontology (HPO) is one of the most popular bioinformatics resources. Recently, HPO-based phenotype semantic similarity has been effectively applied to model patient phenotype data. However, the existing tools are revised based on the Gene Ontology (GO)-based term similarity. The design of the models are not optimized for the unique features of HPO. In addition, existing tools only allow HPO terms as input and only provide pure text-based outputs. Results We present PhenoSimWeb, a web application that allows researchers to measure HPO-based phenotype semantic similarities using four approaches borrowed from GO-based similarity measurements. Besides, we provide a approach considering the unique properties of HPO. And, PhenoSimWeb allows text that describes phenotypes as input, since clinical phenotype data is always in text. PhenoSimWeb also provides a graphic visualization interface to visualize the resulting phenotype network. Conclusions PhenoSimWeb is an easy-to-use and functional online application. Researchers can use it to calculate phenotype similarity conveniently, predict phenotype associated genes or diseases, and visualize the network of phenotype interactions. PhenoSimWeb is available at http://120.77.47.2:8080

    Preparation of core‐shell Zn‐doped CoFe 2

    No full text
    corecore