1,099 research outputs found

    Robust Pose Transfer with Dynamic Details using Neural Video Rendering

    Get PDF
    Pose transfer of human videos aims to generate a high fidelity video of a target person imitating actions of a source person. A few studies have made great progress either through image translation with deep latent features or neural rendering with explicit 3D features. However, both of them rely on large amounts of training data to generate realistic results, and the performance degrades on more accessible internet videos due to insufficient training frames. In this paper, we demonstrate that the dynamic details can be preserved even trained from short monocular videos. Overall, we propose a neural video rendering framework coupled with an image-translation-based dynamic details generation network (D2G-Net), which fully utilizes both the stability of explicit 3D features and the capacity of learning components. To be specific, a novel texture representation is presented to encode both the static and pose-varying appearance characteristics, which is then mapped to the image space and rendered as a detail-rich frame in the neural rendering stage. Moreover, we introduce a concise temporal loss in the training stage to suppress the detail flickering that is made more visible due to high-quality dynamic details generated by our method. Through extensive comparisons, we demonstrate that our neural human video renderer is capable of achieving both clearer dynamic details and more robust performance even on accessible short videos with only 2k - 4k frames.Comment: Video link: https://www.bilibili.com/video/BV1y64y1C7ge

    Low Latency Edge Classification GNN for Particle Trajectory Tracking on FPGAs

    Full text link
    In-time particle trajectory reconstruction in the Large Hadron Collider is challenging due to the high collision rate and numerous particle hits. Using GNN (Graph Neural Network) on FPGA has enabled superior accuracy with flexible trajectory classification. However, existing GNN architectures have inefficient resource usage and insufficient parallelism for edge classification. This paper introduces a resource-efficient GNN architecture on FPGAs for low latency particle tracking. The modular architecture facilitates design scalability to support large graphs. Leveraging the geometric properties of hit detectors further reduces graph complexity and resource usage. Our results on Xilinx UltraScale+ VU9P demonstrate 1625x and 1574x performance improvement over CPU and GPU respectively

    UBR4 deficiency causes male sterility and testis abnormal in Drosophila

    Get PDF
    IntroductionIt has been established that UBR4 encodes E3 ubiquitin ligase, which determines the specificity of substrate binding during protein ubiquitination and has been associated with various functions of the nervous system but not the reproductive system. Herein, we explored the role of UBR4 on fertility with a Drosophila model.MethodsDifferent Ubr4 knockdown flies were established using the UAS/GAL4 activating sequence system. Fertility, hatchability, and testis morphology were studied, and bioinformatics analyses were conducted. Our results indicated that UBR4 deficiency could induce male sterility and influent egg hatchability in Drosophila.ResultsWe found that Ubr4 deficiency affected the testis during morphological analysis. Proteomics analysis indicated 188 upregulated proteins and 175 downregulated proteins in the testis of Ubr4 knockdown flies. Gene Ontology analysis revealed significant upregulation of CG11598 and Sfp65A, and downregulation of Pelota in Ubr4 knockdown flies. These proteins were involved in the biometabolic or reproductive process in Drosophila. These regulated proteins are important in testis generation and sperm storage promotion. Bioinformatics analysis verified that UBR4 was low expressed in cryptorchidism patients, which further supported the important role of UBR4 in male fertility.DiscussionOverall, our findings suggest that UBR4 deficiency could promote male infertility and may be involved in the protein modification of UBR4 by upregulating Sfp65A and CG11598, whereas downregulating Pelota protein expression

    Learning to infer inner-body under clothing from monocular video

    Get PDF
    Accurately estimating the human inner-body under clothing is very important for body measurement, virtual try-on and VR/AR applications. In this paper, we propose the first method to allow everyone to easily reconstruct their own 3D inner-body under daily clothing from a self-captured video with the mean reconstruction error of 0.73 cm within 15 s. This avoids privacy concerns arising from nudity or minimal clothing. Specifically, we propose a novel two-stage framework with a Semantic-guided Undressing Network (SUNet) and an Intra-Inter Transformer Network (IITNet). SUNet learns semantically related body features to alleviate the complexity and uncertainty of directly estimating 3D inner-bodies under clothing. IITNet reconstructs the 3D inner-body model by making full use of intra-frame and inter-frame information, which addresses the misalignment of inconsistent poses in different frames. Experimental results on both public datasets and our collected dataset demonstrate the effectiveness of the proposed method. The code and dataset is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/Inner-Body

    Derivation and elimination of uremic toxins from kidney-gut axis

    Get PDF
    Uremic toxins are chemicals, organic or inorganic, that accumulate in the body fluids of individuals with acute or chronic kidney disease and impaired renal function. More than 130 uremic solutions are included in the most comprehensive reviews to date by the European Uremic Toxins Work Group, and novel investigations are ongoing to increase this number. Although approaches to remove uremic toxins have emerged, recalcitrant toxins that injure the human body remain a difficult problem. Herein, we review the derivation and elimination of uremic toxins, outline kidney–gut axis function and relative toxin removal methods, and elucidate promising approaches to effectively remove toxins

    High-Performance Flexible Quasi-Solid-State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen-Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures

    Get PDF
    Flexible quasi‐/all‐solid‐state supercapacitors have elicited scientific attention to fulfill the explosive demand for portable and wearable electronic devices. However, the use of electrode materials faces several challenges, such as intrinsically slow kinetics and volume change upon cycling, which impede the energy output and electrochemical stability. This study presents well‐aligned molybdenum dioxide@nitrogen‐doped carbon (MoO2@NC) and copper cobalt sulfide (CuCo2S4) tubular nanostructures grown on flexible carbon fiber for use as electrode materials in supercapacitors. Benefiting from the chemically stable interfaces, affluent active sites, and efficient 1D electron transport, the MoO2@NC and CuCo2S4 nanostructures integrated on conductive substrates deliver excellent electrochemical performance. A flexible quasi‐solid‐state asymmetric supercapacitor composed of MoO2@NC as the negative electrode and CuCo2S4 as the positive electrode achieves an ultrahigh energy density of 65.1 W h kg−1 at a power density of 800 W kg−1 and retains a favorable energy density of 27.6 W h kg−1 at an ultrahigh power density of 12.8 kW kg−1. Moreover, it demonstrates good cycling performance with 90.6% capacitance retention after 5000 cycles and excellent mechanical flexibility by enabling 92.2% capacitance retention after 2000 bending cycles. This study provides an effective strategy to develop electrode materials with superior electrochemical performance for flexible supercapacitors

    Assessment of radiation exposure and public health before and after the operation of Sanmen nuclear power plant

    Get PDF
    IntroductionSanmen nuclear power plant (SNPP) operates the first advanced passive (AP1000) nuclear power unit in China.MethodsTo assess the radiological impacts of SNPP operation on the surrounding environment and the public health, annual effective dose (AED) and excess risk (ER) were estimated based on continuous radioactivity monitoring in drinking water and ambient dose before and after its operation during 2014–2021. In addition, the residents' cancer incidence was further analyzed through authorized health data collection.ResultsThe results showed that the gross α and gross β radioactivity in all types of drinking water were ranged from 0.008 to 0.017 Bq/L and 0.032 to 0.112 Bq/L, respectively. The cumulative ambient dose in Sanmen county ranged from 0.254 to 0.460 mSv/y, with an average of 0.354 ± 0.075 mSv/y. There is no statistical difference in drinking water radioactivity and ambient dose before and after the operation of SNPP according to Mann–Whitney U test. The Mann-Kendall test also indicates there is neither increasing nor decreasing trend during the period from 2014 to 2021. The age-dependent annual effective doses due to the ingestion of drinking water or exposure to the outdoor ambient environment are lower than the recommended threshold of 0.1 mSv/y. The incidence of cancer (include leukemia and thyroid cancer) in the population around SNPP is slightly higher than that in other areas, while it is still in a stable state characterized by annual percentage changes.DiscussionThe current comprehensive results show that the operation of SNPP has so far no evident radiological impact on the surrounding environment and public health, but continued monitoring is still needed in the future

    The molecular basis of beta-thalassemia intermedia in southern China: genotypic heterogeneity and phenotypic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical syndrome of thalassemia intermedia (TI) results from the β-globin genotypes in combination with factors to produce fetal haemoglobin (HbF) and/or co-inheritance of α-thalassemia. However, very little is currently known of the molecular basis of Chinese TI patients.</p> <p>Methods</p> <p>We systematically analyzed and characterized β-globin genotypes, α-thalassemia determinants, and known primary genetic modifiers linked to the production of HbF and the aggravation of α/β imbalance in 117 Chinese TI patients. Genotype-phenotype correlations were analyzed based on retrospective clinical observations.</p> <p>Results</p> <p>A total of 117 TI patients were divided into two major groups, namely heterozygous β-thalassemia (n = 20) in which 14 were characterized as having a mild TI with the Hb levels of 68-95 g/L except for five co-inherited ααα<sup>anti-3.7 </sup>triplication and one carried a dominant mutation; and β-thalassemia homozygotes or compound heterozygotes for β-thalassemia and other β-globin defects in which the β<sup>+</sup>-thalassemia mutation was the most common (49/97), hemoglobin E (HbE) variants was second (27/97), and deletional hereditary persistence of fetal hemoglobin (HPFH) or δβ-thalassemia was third (11/97). Two novel mutations, Term CD+32(A→C) and Cap+39(C→T), have been detected.</p> <p>Conclusions</p> <p>Chinese TI patients showed considerable heterogeneity, both phenotypically and genotypically. The clinical outcomes of our TI patients were mostly explained by the genotypes linked to the β- and α-globin gene cluster. However, for a group of 14 patients (13 β<sup>0</sup>/β<sup>N </sup>and 1 β<sup>+</sup>/β<sup>N</sup>) with known heterozygous mutations of β-thalassemia and three with homozygous β-thalassemia (β<sup>0</sup>/β<sup>0</sup>), the existence of other causative genetic determinants is remaining to be molecularly defined.</p

    Fine Mapping of the NRG1 Hirschsprung's Disease Locus

    Get PDF
    The primary pathology of Hirschsprung's disease (HSCR, colon aganglionosis) is the absence of ganglia in variable lengths of the hindgut, resulting in functional obstruction. HSCR is attributed to a failure of migration of the enteric ganglion precursors along the developing gut. RET is a key regulator of the development of the enteric nervous system (ENS) and the major HSCR-causing gene. Yet the reduced penetrance of RET DNA HSCR-associated variants together with the phenotypic variability suggest the involvement of additional genes in the disease. Through a genome-wide association study, we uncovered a ∟350 kb HSCR-associated region encompassing part of the neuregulin-1 gene (NRG1). To identify the causal NRG1 variants contributing to HSCR, we genotyped 243 SNPs variants on 343 ethnic Chinese HSCR patients and 359 controls. Genotype analysis coupled with imputation narrowed down the HSCR-associated region to 21 kb, with four of the most associated SNPs (rs10088313, rs10094655, rs4624987, and rs3884552) mapping to the NRG1 promoter. We investigated whether there was correlation between the genotype at the rs10088313 locus and the amount of NRG1 expressed in human gut tissues (40 patients and 21 controls) and found differences in expression as a function of genotype. We also found significant differences in NRG1 expression levels between diseased and control individuals bearing the same rs10088313 risk genotype. This indicates that the effects of NRG1 common variants are likely to depend on other alleles or epigenetic factors present in the patients and would account for the variability in the genetic predisposition to HSCR
    • …
    corecore