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Genome of the Chinese tree shrew
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Hao-Long Hou3, Li Hu3, Xin-Tian Hu1, Xuan-Ting Jiang3, Ren Lai1, Yong-Shan Lang3, Bin Liang1,

Sheng-Guang Liao3, Dan Mu1,2, Yuan-Ye Ma1, Yu-Yu Niu1, Xiao-Qing Sun3, Jin-Quan Xia3, Jin Xiao3,

Zhi-Qiang Xiong3, Lin Xu1, Lan Yang3, Yun Zhang1, Wei Zhao3, Xu-Dong Zhao1, Yong-Tang Zheng1,

Ju-Min Zhou1, Ya-Bing Zhu3, Guo-Jie Zhang1,3,5, Jun Wang3,4,5,6 & Yong-Gang Yao1

Chinese tree shrews (Tupaia belangeri chinensis) possess many features valuable in animals

used as experimental models in biomedical research. Currently, there are numerous attempts

to employ tree shrews as models for a variety of human disorders: depression, myopia,

hepatitis B and C virus infections, and hepatocellular carcinoma, to name a few. Here we

present a publicly available annotated genome sequence for the Chinese tree shrew. Phy-

logenomic analysis of the tree shrew and other mammalians highly support its close affinity

to primates. By characterizing key factors and signalling pathways in nervous and immune

systems, we demonstrate that tree shrews possess both shared common and unique

features, and provide a genetic basis for the use of this animal as a potential model for

biomedical research.
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T
he tree shrew (Tupaia belangeri), currently placed in the
order Scandentia, has a wide distribution in South Asia,
Southeast Asia and Southwest China1. For several decades,

owing to a variety of unique characteristics ideal in an
experimental animal (for example, small adult body size, high
brain-to-body mass ratio, short reproductive cycle and life span,
low cost of maintenance, and most importantly, a claimed close
affinity to primates) the tree shrew has been proposed as a viable
animal model alternative to primates in biomedical research and
drug safety testing2.

Currently, there are many attempts to employ tree shrew to
create animal models for studying hepatitis C virus (HCV)3 and
hepatitis B virus (HBV) infections4, myopia5, as well as social
stress and depression6,7. Recent studies of aged tree shrew brain
suggested that tree shrew is also a valid model for aging research8

and learning behaviours9. Despite marked progress in using tree
shrews as an animal model, tree shrews are studied only in a
handful of laboratories worldwide, partially because there is no
pure breed of this animal, limited access to this animal resource
and lack of specific reagents. Moreover, a great number of
obstacles to furthering these studies remain, especially the lack of
a high-quality genome and an overall view of gene expression
profiling that leave several key questions unanswered: (a) How
closely related are tree shrews to primates; (b) do tree shrews
share similarity of key signalling pathways to primates and be
fully used as an adjunct to primates; and (c) what are the unique
biological features of the tree shrew? The answers to these
questions provide the information foundation needed to expedite
current efforts in making the Chinese tree shrew a viable model
animal, and to design and develop new animal models for human
diseases, drug screening and safety testing.

In this study, we presented a high-quality genome sequence
and the annotation of Chinese tree shrew. Comparison of tree
shrew and other genomes, including human, revealed a closer
relationship between tree shrew and primates. We identified
several genetic features shared between tree shrew and primates,
as well as the unique genetic changes that corresponds to their
unique biological features. The data provided here are a useful
resource for researches using tree shrew as an animal model.

Results
Genome sequencing of the Chinese tree shrew. To address the
phylogenetic relationship and genetic divergence of tree shrew
and human, and also facilitate the application of the Chinese tree
shrew as an animal model for biomedical research, we generated a
reference genome assembly from a male Chinese tree shrew
(Tupaia belangeri chinensis) from Kunming, Yunnan, China. The
assembly was generated with 79� high-quality Illumina reads
from 19 paired-end libraries with various insert sizes from 170 bp
to 40 kb (Supplementary Table S1), and has a contig N50 size of
22 kb and a scaffold N50 size of 3.7 Mb (Table 1). The total
assembled size of the genome is about 2.86 Gb, close to the 3.2 Gb
genome size estimated from the K-mer calculation
(Supplementary Fig. S1). Repetitive elements comprise 35% of the
tree shrew genome (Supplementary Table S2). Unlike primate
genomes, which are characterized by a large number of Alu/SINE
elements, the tree shrew genome has a marginal proportion of
this element but contains over a million copies of a tree shrew-
specific transfer RNA-derived SINE (Tu-III) family, representing
the dominated transposon that makes up 14% of the entire
genome (Supplementary Table S3).

To aid the gene annotation of the tree shrew genome, we
generated a high-depth transcriptome data from seven tissues
including the brain, liver, heart, kidney, pancreas, ovary and

testis collected from two Chinese tree shrews (Supplementary

Methods 1). The genome was then annotated with a method
integrating the homologous prediction, ab initio prediction and
transcription-based prediction methods (Supplementary Methods
3.2). A non-redundant reference gene set included 22,063 pro-
tein-coding genes of which 17,511 genes show one-to-one
orthology with other mammals, while the remaining genes dis-
play complicated orthologous relationships.

We compared the major parameters of our genome assembly
with the recently released tree shrew genome by Broad Institute
(http://www.ensembl.org/Tupaia_belangeri/Info/Index; abbre-
viated as Broad version in the below text), and found that our
assembly has great advantages than the Broad version
(Supplementary Table S4). First, the Broad version only provided
very low coverage (2X) for the tree shrew genome, whereas we
offered very high depth (B79X) coverage to guarantee a high
accuracy for the genome at the single-base level. Second, our
assembly is more complete than the Broad version. The con-
tiguous non-gap sequences covered over 85% of our tree shrew
genome, while the Broad version covered o67% of the genome.
A more complete assembly allows us to perform a comprehensive
analysis for the genomic features of this animal and to systemi-
cally compare with other species (see below). Third, our assembly
provided over 20 times longer than the Broad version in the
scaffold size. The assembly with longer scaffolds and contig scan
allows us to produce a more complete individual gene model and
a long gene synteny, which is very useful for cross-species com-
parisons. Finally, with the availability of our high-quality
assembly, we generated a significantly improved annotation for
the tree shrew genome, which contains 22,063 genes and is closer
to the human gene number. In contrast, the gene annotation of
the Broad version was based on the homological prediction and
only includes 15,414 genes (most of them are partial genes). In
addition, our gene models are supported by the high-depth
transcriptome data. Over 95% of our gene models have complete
open reading frames, while only o40% of gene models in the
Broad version are complete. Overall, we provided a high-quality
genome together with the well-annotated genes, which would be a
very useful resource for the scientific community.

Evolutionary status of the tree shrew. The entire tree shrew
genome sequence offers essential information needed to settle
ongoing debates on the exact phylogenetic position of this species

Table 1 | Global statistics of the Chinese tree shrew genome.

Insert size
(bp)

Total data
(Gb)

Sequence coverage
(X)

(a) Sequencing
170–800 bp 187.09 58.47

Paired-end
library

2–40� 103 66.36 20.74

Total 253.45 79.20

N50 (Kb) Longest (Kb) Size (Gb)

(b) Assembly
Contig 22 188 2.72
Scaffold 3,656 19,270 2.86

Number
Total length

(Mb)
Percentage
of genome

(c) Annotation
Repeats 4,843,686 1,001.9 35.01
Genes 22,063 743.4 25.98
CDS 166,392 31.0 1.08
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in Euarchontoglires10,11. Analyses of the mitochondrial genome
showed that the tree shrew had a closer relationship to
Lagomorpha than to Dermoptera or primates,11 and molecular
cytogenetic data supported a Scandentia–Dermoptera sister
clade10. However, available evidence from multiple nuclear
genes suggests a closer affinity of tree shrews and primates
(including human)12,13. In a recent study by Hallström et al.14

based on 3,000 genes for phylogenetic analysis, tree shrew was
grouped with Glires (including Rodentia and Lagomorpha),
suggesting a closer affinity of tree shrew with mouse or rabbits.
However, this placement was insufficiently supported thus even
unresolved. Genome sequencing of the Chinese tree shrew and
comparison with 14 other species, including 6 primate species, on
the basis of 2,117 single-copy genes showed that the tree shrew
was first clustered with primate species with a high bootstrap
support by all phylogenetic signals, including coding sequences
with all codon positions and peptide sequences (Fig. 1 and
Supplementary Fig. S2). This result helped to clarify potential
controversy regarding the phylogenetic position of tree shrew
within eutherian mammals reconstructed on the basis of
mitochondrial DNA genome11, genome-wide comparative
chromosome map10 and multilocus nuclear sequences12,13. It
should be mentioned that we observed an unexpected deep split
between our tree shrew and the one sequenced by the Broad
Institute (Supplementary Fig. S2). If this was not caused by the
potential sequence quality owing to the low coverage of the Broad
version, one would expect that the divergence of tree shrew from
different geographic regions may be more complex albeit they
were grouped as one species (Tupaia balangeri).

We estimated the divergence time among these 15 mammalian
genomes (Fig. 1). The tree shrew seems to have diverged from the
clade encompassing the six primate species around 90.9 million
years ago, whereas the rodent clade diverged from the primate
clade relatively earlier, around 96.4 million years ago. The close
affinity of tree shrews to non-human primates, as demonstrated
by the clustering pattern in the phylogenetic tree and relatively
smaller divergence time, directly settles controversies regarding
the phylogenetic position of tree shrews within Euarchontoglires

as well as supports rationale for using tree shrews as an adjunct
and alternative to primates as animal models.

Genetic relationship of tree shrews and humans. The genetic
basis of primate uniqueness and phenotypic distinctions is under
intense scrutiny. The clustering of tree shrew and primates within
the Euarchonta clade is consistent with the observation that the
tree shrew genes have an overall higher similarity in proteins with
humans than rodents (Supplementary Fig. S3). The closer rela-
tionship between tree shrew and primates raises an interesting
question: what primate genes emerged from the Euarchonta clade
and are shared in the tree shrew genome? These genes may
encode functional proteins that shape similar phenotypic char-
acters between tree shrews and primates. From multiways gene
synteny of humans, tree shrews and mice (Supplementary
Methods 4.5), we identified 28 genes previously considered pri-
mate specific present in the tree shrew genome that are likely
to have originated in the Euarchonta clade (Supplementary
Table S5). One such example is the psoriasin protein, a potent
chemotactic inflammatory protein that has an important role in
the innate defence against bacteria on the surface of the body15,
which has duplicated twice within the Euarchonta and formed
three tandem duplicated gene clusters in both tree shrews and
other primates, including humans. Another example is the
NKG2D–ligand interaction, a powerful mechanism to activate
natural killer cells and T cells that regulates immune recognition
and responses during infection, cancer and autoimmunity16. The
NKG2D ligands are induced in response to a variety of stress
stimuli but these ligands belong to diverse families in humans and
mice17. Tree shrews possess the same ligand families as humans,
consisting of a major histocompatibility complex (MHC) class
I-related chain (MIC) gene and the ULBP (UL16-binding protein)
family (Supplementary Fig. S4), and they have six members in the
ULBP family, similar to humans18. This observation suggests that
the tree shrews’ immune system may employ the same indicators
as in humans to cue the elimination of infected, stressed and
damaged cells.
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Figure 1 | Relationship of the Chinese tree shrew and related mammals. (a) Consensus phylogenetic tree of 15 (sub)species based on 2,117

single-copy genes. The topology was supported by all phylogenetic resources including full-coding sequences, first, second, third codon positions, and

amino acids from the orthologous genes. Bootstrap values were calculated from 1,000 replicates and marked in each note. The divergence

times for all notes were estimated using three notes with fossil records as calibration times and marked in each note with error range. (b) Venn diagram of

Chinese tree shrew gene families with human, rhesus macaque and mouse.
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Unique genetic features of the tree shrew. By comparing pri-
mate and rodent genomes, we identified several lineage-specific
genetic changes that potentially contributed to the tree shrews’
adaptations. A total of 162 gene families underwent specific
expansion in tree shrews (Supplementary Methods) with the
immunoglobulin lambda variable gene family showing the most
striking expansion, 67 copies in tree shrews but only 36 copies in
the human genome (Fig. 2a). The immunoglobulins can block
and promote elimination of the pathogen antigens, and accord-
ingly, this expansion could provide an immediate selective
advantage to tree shrews. To further investigate specific gene loss
or pseudogenization in tree shrews, we compared the gene syn-
teny of the tree shrew, human and mouse genomes. We identified
a total of 11 (potential) gene loss and 144 pseudogenes in the tree
shrew genome (Supplementary Table S6 and Supplementary Data
1). Of particular interest, the prostate-specific transglutaminase 4
(TGM4), which expresses as a seminal fluid protein, was lost in
tree shrews. This protein participates in the formation or dis-
solution of seminal coagulum, a process that has an important
role in sperm competition19. The absence of TGM4 may be
consistent with the observed tree shrew mating system, for

example, Tupaia tana species and a few other tupaiids are
generally considered behavioural monogamy1,20, so competitive
postmating is lacking in males of this species. Premature stop
codon mutations or frame-shift mutations may also lead to
functional loss of some important genes in the tree shrew, for
example, the NADPH oxidase (NOX1) gene, which has an
important role in cellular defence against acidic stress21, was
disrupted by a premature stop codon in tree shrews. The
pseudogenization of this gene suggests that tree shrews may have
reduced levels of reactive oxygen species in the arterial wall in
conditions like hypertension, hypercholesterolaemia, diabetes and
aging, as well as infection.

Nervous system of the tree shrew. Tree shrews have a high
brain-to-body mass ratio and a well-developed brain structure
resembling primates1. Available evidence indicates that tree
shrews could be used in depression research6. A dominant and
subordinate relationship could be created between two male tree
shrews in visual and olfactory contact, with the subordinate
animal showing a remarkable alteration of physiological, brain
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functional and behavioural activities that are similar to those
observed in depressed patients6. In humans, the polymorphism of
the serotonin transporter promoter is reputedly associated with
the stress disorder and depression susceptibility22. However, tree
shrews lack this polymorphism region23, a finding confirmed by
our genome sequencing, implying a potentially different
regulation of this gene in stress reactions between tree shrews
and humans. Excepting this difference, we detected all 23 known
neurotransmitter transporters (Supplementary Table S7) in the
tree shrew genome that have known roles responsible for the
corresponding features of depression24. Studies have
demonstrated that antidepressants function in patients by
suppressing the activity of neurotransmitter transporters25. In
tree shrews, these transporters are highly conserved in amino-
acid sequence with their human counterparts, with the exception
of glycine transporter type 1 protein, which shows a relatively fast
rate of evolution in the tree shrew lineage (Supplementary
Fig. S5). The existence of complete and conserved neuro-
transmitter transporters in tree shrews provides a genetic basis
for making tree shrews an attractive model for experimental
studies of psychosocial stress6 and evaluation of pharmacological
effect of antidepressant drugs.

Similar to primates, tree shrews have an especially well-
developed visual system, colour vision and eye structure1.
A recent study reported that there is a close homology between
cholinergic mechanisms in tree shrew and primate visual
cortices26. Experiments on tree shrews suggest that the
subordinate relationship caused by social stress is mediated by
visual rather than olfactory cues27, coinciding with our finding
that several olfactory genes have been pseudogenized and the
relatively small number of observed olfactory receptors (n¼ 690)
in tree shrews as compared with in rodents (n¼B1,000)
(Supplementary Methods). The well-developed eye structure of
tree shrews has also created substantial interest in using tree
shrews as a model in ophthalmological studies, especially for
myopia5.

To provide a genetic basis for the tree shrews’ visual system, we
systemically scanned the genes involved in visual system. The tree
shrew genome encompasses the orthologues of almost all the 209
known visually related human genes, but lacks two cone
photoreceptors, the middle wave-length sensitive proteins,
which are specifically duplication genes in catarrhines and lead
to the trichromacy in higher primates28. The absence of the
middle wave-length sensitive proteins is consistent with the fact
that tree shrews, similar to some lower primates, lack the green
pigment and possess dichromats29. As most tree shrew species are
diurnal and spend the entire night for sleep in their nests, they do
not rely on dim-light visuals29. The evolutionary rate testing
suggested that the rod photoreceptor rhodopsin, which is
responsible for the night vision, had a faster evolutionary rate
in the tree shrew lineage (Supplementary Fig. S6), suggesting a
looser evolutionary constraint of dim-light vision because of their
adaptation to the diurnal life. Mutation p.F45L of rhodopsin
can cause retinitis pigmentosa, an incurable night blindness
disease in humans30. Interestingly, we detected a unique p.F45C
substitution in tree shrew species (Supplementary Fig. S7), which
implies a potentially functional degeneration of this gene in tree
shrews. This finding corroborates earlier observations of heavily
cone-dominated retina structures with only a small proportion of
rod photoreceptors in tree shrews31. In addition, we checked the
presence of genes regulating the circadian photoreceptor,
including both rod–cone photoreceptive systems and non-visual
photoreceptive systems, in tree shrew and compared their
sequence identity between tree shrew and human. We identified
an overall high amino-acid sequence identity (except for enzyme
acetylserotonin O-methyltransferase) for genes that are involved

in photopigment, phototransduction or synthesis of melatonin,
which acts as a circadian rhythm regulator32 (Supplementary
Table S8). This pattern may explain why most tree shrews are
day-active.

Immune system of the tree shrew. Hepatitis B is an inflamma-
tory liver disease caused by HBV, which has infected about 2
billion people globally and with an annual death toll estimated at
600,000 (ref. 33). Hepatitis C is caused by the HCV, another
worldwide infectious disease34. Except for chimpanzees, there are
many reports that tree shrew and its hepatocytes could be
infected with human HBV4 and HCV3. Hence, the property of
genes involved in immunity response of viral infection
demonstrated by tree shrews further contributes to their
preferred choice as an attractive model for studying viral
hepatitis and hepatocellular carcinoma35. Here, the available
tree shrew genome data offer a distinct advantage to scan these
immune genes involved in viral hepatitis.

The MHC has a central role in immune responsiveness and
susceptibility to various autoimmune and infection diseases.
However, so far there is limited information for tree shrew MHC
sequences36,37. Even though the fragment nature of MHC
region and sequencing of the MHC in tree shrew are still
incomplete, several points can be distilled from the genome
data. First, the entire MHC region of tree shrews is conserved
with that of humans, both in the organization of MHC
and the gene syntenic order. Second, tree shrews bear at least
four genes that belong to MHC class I genes, which are
homologous to HLA class I gene and one MIC (Supplementary
Fig. S8). Phylogenetic tree analysis clusters tree shrew genes
into a separated group diverging from human class I gene
group, implying tree shrews have a unique MHC class I locus
formed by paralogous amplification (Fig. 2b). Intriguingly, one
class I gene in tree shrews is located in the HLA-A region and has
well synteny with human locus. However, its functional
orthologue with HLA class I gene requires further experimental
inspection (Supplementary Fig. S8). The MHC class II region
of the tree shrew encompasses homologous of all human
class II genes, including the classical class II gene HLA-DP,
HLA-DQ and HLA-DR, as well as non-classical class II genes
HLA-DM and HLA-DO (Supplementary Fig. S9 and
Supplementary Table S9). The class III region in tree shrews is
the most conserved region with humans in gene syntentic
alignment. However, in contrast with humans and mice that both
obtained two copies of C4 by lineage-specific duplication38, tree
shrews only have one C4 gene in this region (Fig. 2c and
Supplementary Fig. S10).

We next investigated the property of gene interaction
pathways involved in viral infection. Current studies suggest
that a total of 163 human genes were reported to respond in HBV
and HCV infection39,40. The counterparts of most of those
genes are present in the tree shrew genome and shared a relatively
high sequence identity with human (Fig. 3 and Supplementary
Data 2), with the exception of DDX58. Tree shrews have lost
DDX58, which functions to trigger the transduction cascade
involving in the signalling pathway mediated by the MAVS,
resulting in the activation of NF-kB and is essential for the
production of interferon in response to virus, including HCV41.
The functional loss of DDX58 in tree shrews suggests that
the interruption of immune response may serve as one potential
reason causing the capable HCV infection in this animal.
Interestingly, other subpathways involved in HCV infection
show relatively lower cross-species genetic diversity than
that of the MAVS–NF-kB signalling pathway (Fig. 3), in
which recurrent viral antagonism has led to a convergent
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evolution of escape from hepaciviral antagonism in primates42.
Note that a recent study by Tong et al.40 provided functional data
that tree shrew CD81, SR-BI, claudin-1 and occludin support
HCV infection.

Although HBV is classified as a double-stranded DNA virus, it
behaves similarly to a retrovirus and replicates by reverse
transcription of an RNA intermediate43. TRIM5, one of the
host restriction factors blocking retroviral replication44, is located
in a gene cluster in human with three other closely related TRIM
genes, including TRIM6, TRIM34 and TRIM22. Genes in this
cluster have also been suggested to inhibit the activity of HBV45.
In the tree shrew, this gene cluster displays a dynamic
evolutionary episode (Fig. 2d and Supplementary Fig. S11) as it
has achieved five Trim5 copies with four encoding validated open
reading frames by several lineage-specific tandem duplication
events. Astonishingly, similar to some primates46,47, one of the
TRIM5 copy has a CypA retrotranposition and form a TrimCyp
chimera transcript, which was validated by reverse transcriptase
PCR (Supplementary Fig. S12). The appearance of TrimCyp
independently in several primate species and tree shrews implies
the potential importance of this fused transcript. The TRIM34
gene in the cluster, which also has function in retrovirus
restriction48, however, has apparently been lost in tree shrews,
though tree shrews may potentially have remedied the loss of
TRIM34 with the expansion of TRIM5.

The current analysis for all related and essential genes
involved in HBV and HCV infection (Fig. 3 and Supplementary
Data 2) provided helpful information for us to explain why
this animal could be used to create animal model for viral
infection. Although we did not provide independent infection
experiments (either the animal or primary hepatocytes) to
prove its susceptibility, the plenty of previous reports on HBV4

and HCV3 infection would certify tree shrews’ susceptibility to
these viruses. Nonetheless, the findings for the absence of DDX58
gene and other unique gene features in tree shrew would account
for the distinct immune response involved in viral hepatitis.

Drug-targeted domain in tree shrews. The cytochrome P450
(CYP) superfamily encodes the major enzymes involved in drug
metabolism, activation and interaction49. In general, tree shrews
have a more similar number of genes in CYP subfamilies with
humans than mice do (Supplementary Table S10). For example,
mice have substantially expanded in CYP2 family with 46
members, while humans and tree shrews have fewer copy
numbers.

Finally, we sought to assess the genetic divergence of hepatitis
drug-targeted genes between tree shrews and humans. A total of
42 genes are known targets for hepatitis drugs, such as halothane,
theophylline and meperidine50,51. Only one gene, neuropeptide S
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receptor 1 (NPSR1), has lost its targeted domain (7tm-1) of
halothane in tree shrews owing to the frame-shift mutation
(Supplementary Fig. S13). All other druggable genetic
components can be found in tree shrews and show high
conservation in sequence with human orthologues
(Supplementary Table S11). The average diversity of the
hepatitis drug-targeted domains between humans and tree
shrews is about 5%. The conservation of the drug targets,
together with the conserved signalling pathways in tree shrews
and humans, would encourage the use of tree shrews as a
substitution for human patients in pharmacokinetics evaluation
of drug disposition, targets and side effects.

Discussion
Despite the fact that tree shrew has been proposed as a valid
experimental animal to replace primates in biomedical research
and drug safety testing2, there are limited usages of this animal in
the field owing to many reasons. The publicly available annotated
genome sequence of the Chinese tree shrew we generated offers
an opportunity to decipher the genetic basis of the tree shrews’
suitability as an animal model for studying depression, myopia
and viral infection3–7. Although we did not provide further
experimental evidence to solidify the speculations deducted from
the comparative genomics, the unique genetic features that we
discerned from the genome of Chinese tree shrew has provided
insightful information for us to understanding the biology of this
animal. By comparing the overall genomic profile of tree shrews
and other related mammalians, particularly those of the
commonly used experimental animals like rats and mice, we
showed that tree shrews had a relatively closer affinity to non-
human primates, settling a long-running dispute regarding the
phylogenetic position of tree shrew within the Euarchontoglires
clade. We likewise characterized the key classes of molecules
relevant to the tree shrew nervous and immune systems,
demonstrating the genetic basis of this animal as a rising model
for biomedical research. The availability of this new genomic data
provides a valuable resource and tool for functional genomic and
pharmacogenomic studies on tree shrews while also facilitating
increasing use of the tree shrew as an animal model in broader
fields.

Methods
Source of samples. A male Chinese tree shrew (Tupaia belangeri chinensis) from
Yunnan, China, was used for DNA isolation and sequencing. RNA samples from
the brain, liver, heart, kidney, pancreas and testis of another male Chinese tree
shrew and from the ovary of one female individual were collected for transcriptome
sequencing. All experiments on animals involved in this study have been approved
by the Kunming Institute of Zoology Institutional Review Board.

Genome sequencing and assembly. DNA and RNA sequencing libraries were
constructed using standard Illumina libraries prep protocols. Tree shrew genomes
were assembled de novo by the de Bruijn graph-based assembler SOAPdenovo 1.05
(ref. 52). First, low-quality reads or those with potential sequencing errors were
removed or corrected by K-mer frequency-based methods. SOAPdenovo1.05
constructed the de Bruijn graph by splitting the reads from short insert size
libraries (170–800 bp) into 41-mers and then merging the 41-mers, after which the
contigs (which exhibited unambiguous connections in de Bruijn graphs) were
collected. All reads were aligned onto the contigs for scaffold building using the
paired-end information. This paired-end information was subsequently used to
link contigs into scaffolds, step-by-step, from short insert sizes to long insert sizes.
Some intra-scaffold gaps were filled by local assembly using the reads in a read pair,
where one end uniquely aligned to a contig while the other end was located within
the gap.

Genome annotation. We employed RepeatMasker 3.3.0 (ref. 53) to identify and
classify transposable elements by aligning the tree shrew genome sequences against
a library of known repeats, Repbase (http://www.girinst.org/repbase/), with default
parameters. We used the same pipeline and parameters to re-run the repeat
annotation in human, mouse, rat and dog genomes, which were downloaded from
Ensembl (release 60). To predict genes in the tree shrew genome, we used both

homology-based and de novo methods. For the homology-based prediction, human
and mouse proteins were downloaded from Ensembl (release 60) and mapped onto
the genome using TblastN 2.2.18. Then, homologous genome sequences were
aligned against the matching proteins using GeneWise 2-2-0 (ref. 54) to define gene
models. For de novo prediction, Augustus 2.5.5 (ref. 55) and Genscan 1.0 (ref. 56)
were employed to predict coding genes, using appropriate parameters. RNA-seq
data were mapped to genome using Tophat 1.4.1 (ref. 57), and transcriptome-based
gene structures were obtained by cufflinks 1.3.0 (http://cufflinks.cbcb.umd.edu/).
Finally, homology-based, de novo-derived gene sets and transcript gene sets were
merged to form a comprehensive and non-redundant reference gene set using
GLEAN 2.0 (http://sourceforge.net/projects/glean-gene/), removing all genes with
sequences o50 amino acid as well as those that only had weak de novo support.

Phylogenetic analysis. We used TreeFam 7.0 (http://www.treefam.org/) to define
gene families among 15 mammalian genomes: human, chimpanzee, gorilla, oran-
gutan, rhesus macaque, marmoset, Chinese tree shrew, northern tree shrew, rabbit,
mouse, rat, dog, cow, opossum and platypus. We carried out the same pipeline and
parameters used in our previously published study58. We obtained 18,823 gene
families and 2,117 single-copy orthologues. The 2,117 single-copy gene families
were used to reconstruct the phylogenetic tree. CDS sequences from each single-
copy family were aligned by MUSCLE 3.7 (http://www.ebi.ac.uk/Tools/msa/
muscle/) with the guidance of aligned protein sequences and concatenated to one
super gene for each species. Codons 1, 2, 3 and 1þ 2 sequences were extracted
from CDS alignments and used as input for building trees, along with protein, CDS
sequences. Then, RAxML 7.2.8 (http://sco.h-its.org/exelixis/software.html) was
applied for these sequence sets to build phylogenetic trees under the GTRþ gamma
model for nucleotide sequences and BLOSUM62þ gamma model for protein
sequences. We used 1,000 rapid bootstrap replicates to assess the branch reliability
in RAxML 7.2.8. Using MCMCtree in PAML 4.4 (ref. 59), we determined split
times with approximate likelihood calculation. The alpha parameter for gamma
rates at sites was set as that computed by baseml in the initial step. The MCMC
process of PAML 4.4 MCMCtree was run to sample 1 million times with sample
frequency set to 50, after a burn-in of 5 millions iterations. The ‘fine-tune’
parameters were set as ‘0.00356 0.02243 0.00633 0.12 0.43455’ to make acceptance
proportions fall in interval (20 and 40%). For other parameters we used the
defaults. We applied Tracer 1.4 (http://beast.bio.ed.ac.uk/) to check convergence.
Two independent runs were performed to confirm the convergence. Gene family
expansion analysis was performed using CAFE 2.1 (http://sites.bio.indiana.edu/
Bhahnlab/Software.html). In CAFE, a random birth and death model was
proposed to study gene gain and loss in gene families across a user-specified
phylogenetic tree. A global parameter l, which described both the gene birth (l)
and death (m¼ � l) rates across all branches in tree for all gene families was
estimated using maximum likelihood. Then, the conditional P-value was calculated
for each gene family, and families with conditional P-values less than threshold
(0.05) were considered as having accelerated rate of expansion and contraction.

Shared gene and loss gene identification. To identify genes tree shrews and
primates shared, we first elucidated the orthologous relationship among tree shrew,
mouse and human proteins. The longest transcript from the Ensembl database
(release 60) was chosen to represent each gene with alternative splicing variants.
We then subjected all the proteins to BlastP analysis with the similarity cutoff
threshold of e-value¼ 1e� 5. With the human protein set as a reference, we found
the best hit for each tree shrew protein in other species, with the criteria that 430%
of the aligned sequence showed an identity above 30%. Reciprocal best-match pairs
were defined as orthologues. Then gene order information was used to filter the
false-positive orthologues caused by draft genome assembly and annotation. The
orthologues not in gene synteny blocks were removed from further analysis. Pre-
viously identified primate-specific genes60 were mapped on to the synteny map.
Primate genes with tree shrew orthologues in the synteny map but which were
absent in mice were considered candidate-shared genes between primates and tree
shrews. We also performed the manual check for all candidate genes. From the
synteny map, we also observed genes specifically missing in tree shrews that should
have been lost in this species. To further confirm this finding, we manually checked
and annotated the genes in the tree shrew genome, and filtered those located in gap
regions.

Pseudogene identification. To detect homozygous pseudogenes in the tree
shrew genome in silico, we first aligned all the human cDNA (Ensembl release-56)
onto the tree shrew genomes using BLAT with parameters (–extendThroughN -
fine). The best hit regions of each gene with 1-kb flanking sequence were cut down
and re-aligned with their corresponding human orthologous protein sequence
using GeneWise 2-2-0 (ref. 54) with parameters (-genesf -tfor -quiet), which could
help define the detail exon–intron structure of each gene. All genes containing
frame shifts or premature stop codons reported by GeneWise were considered
candidate pseudogenes. We then carried out a series of filtering processes: (1) the
reported frame shifts or premature stop codons were due to the flaw in algorithm
of GeneWise that were filtered; (2) the candidate pseudogenes with obvious
splicing errors near their frame shifts or premature stop codons were filtered; and
(3) the candidate pseudogenes due to assembly error or heterozygosis were filtered.
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Finally, we compared all candidate pseudogenes with the alternative splicing
forms in human.

References
1. Peng, Y. Z. et al. Biology of Chinese Tree Shrews (Tupaia belangeri chinensis)

(Yunnan Science and Technology Press, 1991).
2. Cao, J., Yang, E. B., Su, J. J., Li, Y. & Chow, P. The tree shrews: adjuncts and

alternatives to primates as models for biomedical research. J. Med. Primatol. 32,
123–130 (2003).

3. Zhao, X. et al. Primary hepatocytes of Tupaia belangeri as a potential model for
hepatitis C virus infection. J. Clin. Invest. 109, 221–232 (2002).

4. Yan, R. Q. et al. Human hepatitis B virus and hepatocellular carcinoma. I.
Experimental infection of tree shrews with hepatitis B virus. J. Cancer Res. Clin.
Oncol. 122, 283–288 (1996).

5. Norton, T. T., Amedo, A. O. & Siegwart, Jr J. T. Darkness causes myopia in
visually experienced tree shrews. Invest. Ophthalmol. Vis. Sci. 47, 4700–4707
(2006).

6. Fuchs, E. Social stress in tree shrews as an animal model of depression: an
example of a behavioral model of a CNS disorder. CNS Spectr. 10, 182–190
(2005).

7. van Kampen, M., Kramer, M., Hiemke, C., Flugge, G. & Fuchs, E. The chronic
psychosocial stress paradigm in male tree shrews: evaluation of a novel animal
model for depressive disorders. Stress 5, 37–46 (2002).

8. Yamashita, A., Fuchs, E., Taira, M., Yamamoto, T. & Hayashi, M.
Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex
and nucleus accumbens of aged tree shrews and Japanese macaques. J. Med.
Primatol. 41, 147–157 (2012).

9. Bartolomucci, A., de Biurrun, G., Czeh, B., van Kampen, M. & Fuchs, E.
Selective enhancement of spatial learning under chronic psychosocial stress.
Eur. J. Neurosci. 15, 1863–1866 (2002).

10. Nie, W. et al. Flying lemurs—the ‘flying tree shrews’? Molecular cytogenetic
evidence for a Scandentia-Dermoptera sister clade. BMC Biol. 6, 18 (2008).

11. Xu, L., Chen, S. Y., Nie, W. H., Jiang, X. L. & Yao, Y. G. Evaluating the
phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based
on complete mitochondrial genome: implication for using tree shrew as an
alternative experimental animal to primates in biomedical research. J. Genet.
Genomics 39, 131–137 (2012).

12. Janecka, J. E. et al. Molecular and genomic data identify the closest living
relative of primates. Science 318, 792–794 (2007).

13. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary
constraint using 29 mammals. Nature 478, 476–482 (2011).

14. Hallstrom, B. M. & Janke, A. Mammalian evolution may not be strictly
bifurcating. Mol. Biol. Evol. 27, 2804–2816 (2010).

15. Glaser, R. et al. Antimicrobial psoriasin (S100A7) protects human skin from
Escherichia coli infection. Nat. Immunol. 6, 57–64 (2005).

16. Eagle, R. A. & Trowsdale, J. Promiscuity and the single receptor: NKG2D. Nat.
Rev. Immunol. 7, 737–744 (2007).

17. Gleimer, M. & Parham, P. Stress management: MHC class I and class I-like
molecules as reporters of cellular stress. Immunity 19, 469–477 (2003).

18. Kondo, M. et al. Comparative genomic analysis of mammalian NKG2D ligand
family genes provides insights into their origin and evolution. Immunogenetics
62, 441–450 (2010).

19. Brillard-Bourdet, M. et al. Amidolytic activity of prostatic acid phosphatase on
human semenogelins and semenogelin-derived synthetic substrates. Eur. J.
Biochem. 269, 390–395 (2002).

20. Munshi-South, J., Bernard, H. & Emmons, L. Behavioral monogamy and fruit
availability in the large treeshrew (Tupaia tana) in Sabah, Malaysia. J. Mammal.
88, 1427–1438 (2007).

21. Rueckschloss, U., Duerrschmidt, N. & Morawietz, H. NADPH oxidase in
endothelial cells: impact on atherosclerosis. Antioxid. Redox Signal 5, 171–180
(2003).

22. Caspi, A. et al. Influence of life stress on depression: moderation by a
polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

23. Lesch, K. P. et al. The 5-HT transporter gene-linked polymorphic region (5-
HTTLPR) in evolutionary perspective: alternative biallelic variation in rhesus
monkeys. J. Neural. Transm. 104, 1259–1266 (1997).

24. Iversen, L. Neurotransmitter transporters and their impact on the development
of psychopharmacology. Br. J. Pharmacol. 147(Suppl 1): S82–S88 (2006).

25. Richelson, E. Interactions of antidepressants with neurotransmitter transporters
and receptors and their clinical relevance. J. Clin. Psychiatry 64(Suppl 13): 5–12
(2003).

26. Bhattacharyya, A., Biessmann, F., Veit, J., Kretz, R. & Rainer, G. Functional and
laminar dissociations between muscarinic and nicotinic cholinergic
neuromodulation in the tree shrew primary visual cortex. Eur. J. Neurosci. 35,
1270–1280 (2012).

27. Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. Neurogenesis in
the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and
NMDA receptor activation. J. Neurosci. 17, 2492–2498 (1997).

28. Dulai, K. S., von Dornum, M., Mollon, J. D. & Hunt, D. M. The evolution of
trichromatic color vision by opsin gene duplication in New World and Old
World primates. Genome Res. 9, 629–638 (1999).

29. Hunt, D. M. et al. Molecular evolution of trichromacy in primates. Vision Res.
38, 3299–3306 (1998).

30. Sung, C. H. et al. Rhodopsin mutations in autosomal dominant retinitis
pigmentosa. Proc. Natl Acad. Sci. USA 88, 6481–6485 (1991).

31. Immel, J. H. The Tree Shrew Retina: Photoreceptors and Retinal Pigment
Epithelium (University of California, 1981).

32. Hattar, S. et al. Melanopsin and rod-cone photoreceptive systems account for
all major accessory visual functions in mice. Nature 424, 76–81 (2003).

33. World Health Organization (who.int). Hepatitis B Key Facts.Fact sheet No. 204
Revised August 2008.( updated July 2012 ) Available from http://www.who.int/
mediacentre/factsheets/fs204/en/.

34. Shepard, C. W., Finelli, L. & Alter, M. J. Global epidemiology of hepatitis C
virus infection. Lancet Infect. Dis. 5, 558–567 (2005).

35. Yan, R. Q. et al. Human hepatitis B virus and hepatocellular carcinoma. II.
Experimental induction of hepatocellular carcinoma in tree shrews exposed to
hepatitis B virus and aflatoxin B1. J. Cancer Res. Clin. Oncol. 122, 289–295
(1996).

36. Oppelt, C., Wutzler, R. & von Holst, D. Characterisation of MHC class II DRB
genes in the northern tree shrew (Tupaia belangeri). Immunogenetics 62,
613–622 (2010).

37. Flugge, P., Fuchs, E., Gunther, E. & Walter, L. MHC class I genes of the tree
shrew Tupaia belangeri. Immunogenetics 53, 984–988 (2002).

38. Blanchong, C. A. et al. Genetic, structural and functional diversities of human
complement components C4A and C4B and their mouse homologues, Slp and
C4. Int. Immunopharmacol. 1, 365–392 (2001).

39. Wang, F. S. Current status and prospects of studies on human genetic alleles
associated with hepatitis B virus infection. World J. Gastroenterol. 9, 641–644
(2003).

40. Tong, Y. et al. Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C
virus infection. J. Virol. 85, 2793–2802 (2011).

41. Sumpter, Jr R. et al. Regulating intracellular antiviral defense and
permissiveness to hepatitis C virus RNA replication through a cellular RNA
helicase, RIG-I. J. Virol. 79, 2689–2699 (2005).

42. Patel, M. R., Loo, Y. M., Horner, S. M., Gale, Jr. M. & Malik, H. S. Convergent
evolution of escape from hepaciviral antagonism in primates. PLoS Biol. 10,
e1001282 (2012).

43. Miller, R. H. & Robinson, W. S. Common evolutionary origin of hepatitis B
virus and retroviruses. Proc. Natl Acad. Sci. USA 83, 2531–2535 (1986).

44. Sebastian, S. & Luban, J. TRIM5alpha selectively binds a restriction-sensitive
retroviral capsid. Retrovirology 2, 40 (2005).

45. Gao, B., Duan, Z., Xu, W. & Xiong, S. Tripartite motif-containing 22 inhibits
the activity of hepatitis B virus core promoter, which is dependent on nuclear-
located RING domain. Hepatology 50, 424–433 (2009).

46. Ribeiro, I. P. et al. Evolution of cyclophilin A and TRIMCyp retrotransposition
in New World primates. J. Virol. 79, 14998–15003 (2005).

47. Newman, R. M. et al. Evolution of a TRIM5-CypA splice isoform in old world
monkeys. PLoS Pathog. 4, e1000003 (2008).

48. Li, X. et al. Unique features of TRIM5alpha among closely related human
TRIM family members. Virology 360, 419–433 (2007).

49. Guengerich, F. P. Cytochrome p450 and chemical toxicology. Chem. Res.
Toxicol. 21, 70–83 (2008).

50. Kendrick, S. F., Henderson, E., Palmer, J., Jones, D. E. & Day, C. P.
Theophylline improves steroid sensitivity in acute alcoholic hepatitis.
Hepatology 52, 126–131 (2010).

51. Knox, C. et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on
drugs. Nucleic Acids. Res. 39, D1035–D1041 (2011).

52. Li, R. et al. De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res. 20, 265–272 (2010).

53. Chen, N. Using RepeatMasker to identify repetitive elements in genomic
sequences. Curr. Protoc. Bioinformatics Chapter 4, Unit 4, 10 (2004).

54. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res.
14, 988–995 (2004).

55. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a
new intron submodel. Bioinformatics 19(Suppl 2): ii215–ii225 (2003).

56. Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in Drosophila genomic
DNA. Genome Res. 10, 516–522 (2000).

57. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

58. Kim, E. B. et al. Genome sequencing reveals insights into physiology and
longevity of the naked mole rat. Nature 479, 223–227 (2011).

59. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol.
Evol. 24, 1586–1591 (2007).

60. Zhang, Y. E., Landback, P., Vibranovski, M. D. & Long, M. Accelerated
recruitment of new brain development genes into the human genome. PLoS
Biol. 9, e1001179 (2011).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2416

8 NATURE COMMUNICATIONS | 4:1426 | DOI: 10.1038/ncomms2416 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.who.int/mediacentre/factsheets/fs204/en/
http://www.who.int/mediacentre/factsheets/fs204/en/
http://www.nature.com/naturecommunications


Acknowledgements
We thank Professors Wen Wang, Ya-Ping Zhang and Peng Shi for helpful comments
regarding this project, and Dr Wen-Hui Lee for preparing RNA samples. This work was
funded in part by grants from Chinese Academy of Sciences (KSCX2-EW-R-11, KSCX2-
EW-R-12 and KSCX2-EW-J-23), the National 863 Project of China (No. 2012AA021801)
and Yunnan Province (2009CI119). X.-T.H., L.X. and Y.-G.Y. were supported by the
Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB0202).

Author contributions
G.-J.Z., J.W. and Y.-G.Y. managed the project. Y.F., Z.-Y.H., Z.-Q.X., X.-Q.S., Y.-X.C.,
W.Z., Y.-B.Z., L.Y., D.-D.F., X.-T.J., J.-Q.X., J.X., S.-G.L., Y.-S.L., H.-L.H., J.H., C.-C.C.
and L.H. performed the genome assembly, gene annotation, repeats annotation, evolu-
tion analysis, transcriptome analysis, pseudogene, immune gene and druggable domain
analyses. G.-J.Z. and Y.-G.Y. wrote the manuscript with significant contribution of Y.F.,
Z.-Y.H. and other authors in list. C.-S.C., X.-T.H., R.L., B.L., Y.-Y.M., Y.-Y.N., L.X., Y.Z.,
X.-D.Z., Y.-T.Z., J.-M.Z. and Y.-G.Y. financially supported this work, provided many
suggestions, revised the manuscript and contributed equally to this work. D.M. performed
PCR-based experiments. The following authors were listed in alphabetical order: Chang-
Chang Cao, Ce-Shi Chen, Yuan-Xin Chen, Ding-Ding Fan, Jing He, Hao-Long Hou, Li Hu,
Xin-Tian Hu, Xuan-Ting Jiang, Ren Lai, Yong-Shan Lang, Bin Liang, Sheng-Guang Liao,
Dan Mu, Yuan-Ye Ma, Yu-Yu Niu, Xiao-Qing Sun, Jin-Quan Xia, Jin Xiao, Zhi-Qiang
Xiong, Lin Xu, Lan Yang, Yun Zhang, Wei Zhao, Xu-Dong Zhao, Yong-Tang Zheng,
Ju-Min Zhou, Ya-Bing Zhu.

Additional information
Accession codes: The Chinese tree shrew whole-genome shotgun project has been
deposited at DDBJ/EMBL/GenBank under the accession number ALAR00000000. The
version described in this paper is the first version, ALAR01000000. All short read data
have been deposited into the Short Read Archive (http://www.ncbi.nlm.nih.gov/sra)
under the accession number SRA055299. Raw sequencing data of the transcriptome have
been deposited in the Gene Expression Omnibus with the accession number GSE39150.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Fan, Y. et al. Genome of the Chinese tree shrew. Nat. Commun.
4:1426 doi: 10.1038/ncomms2416 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2416 ARTICLE

NATURE COMMUNICATIONS | 4:1426 | DOI: 10.1038/ncomms2416 | www.nature.com/naturecommunications 9

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.ncbi.nlm.nih.gov/sra
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Genome sequencing of the Chinese tree shrew
	Evolutionary status of the tree shrew

	Table 1 
	Genetic relationship of tree shrews and humans

	Figure™1Relationship of the Chinese tree shrew and related mammals.(a) Consensus phylogenetic tree of 15 (sub)species based on 2,117 single-copy genes. The topology was supported by all phylogenetic resources including full-coding sequences, first, second
	Unique genetic features of the tree shrew
	Nervous system of the tree shrew

	Figure™2Immune system in Chinese tree shrew and compared with human and mouse.(a) Specific expansion of the immunoglobulin lambda variable (IGLV) gene family in the tree shrew. Gene IDs in red are tree shrew genes. (b) Phylogenetic relationship of MHC-cla
	Immune system of the tree shrew
	Drug-targeted domain in tree shrews

	Figure™3Genetic divergence of genes involved in HCV infection pathway between human and Chinese tree shrew.Colours represent the degree of sequence identity at the amino-acid level
	Discussion
	Methods
	Source of samples
	Genome sequencing and assembly
	Genome annotation
	Phylogenetic analysis
	Shared gene and loss gene identification
	Pseudogene identification

	PengY. Z.Biology of Chinese Tree Shrews (Tupaia belangeri chinensis)Yunnan Science and Technology Press1991CaoJ.YangE. B.SuJ. J.LiY.ChowP.The tree shrews: adjuncts and alternatives to primates as models for biomedical researchJ. Med. Primatol.321231302003
	We thank Professors Wen Wang, Ya-Ping Zhang and Peng Shi for helpful comments regarding this project, and Dr Wen-Hui Lee for preparing RNA samples. This work was funded in part by grants from Chinese Academy of Sciences (KSCX2-EW-R-11, KSCX2-EW-R-12 and K
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




