14,236 research outputs found

    EXIT-charts-aided hybrid multiuser detector for multicarrier interleave-division multiple access

    Get PDF
    A generically applicable hybrid multiuser detector (MUD) concept is proposed by appropriately activating different MUDs in consecutive turbo iterations based on the mutual information (MI) gain. It is demonstrated that the proposed hybrid MUD is capable of approaching the optimal Bayesian MUD's performance despite its reduced complexity, which is at a modestly increased complexity in comparison with that of the suboptimum soft interference cancellation (SoIC) MU

    Stochastic stability and stabilization of discrete-time singular Markovian jump systems with partially unknown transition probabilities

    Get PDF
    This paper considers the stochastic stability and stabilization of discrete-time singular Markovian jump systems with partially unknown transition probabilities. Firstly, a set of necessary and sufficient conditions for the stochastic stability is proposed in terms of LMIs, then a set of sufficient conditions is proposed for the design of a state feedback controller to guarantee that the corresponding closed-loop systems are regular, causal, and stochastically stable by employing the LMI technique. Finally, some examples are provided to demonstrate the effectiveness of the proposed approaches

    Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    Full text link
    Recently exciting progress has been made on protein contact prediction, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual networks. This deep neural network allows us to model very complex sequence-contact relationship as well as long-range inter-contact correlation. Our method greatly outperforms existing contact prediction methods and leads to much more accurate contact-assisted protein folding. Tested on three datasets of 579 proteins, the average top L long-range prediction accuracy obtained our method, the representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints can yield correct folds (i.e., TMscore>0.6) for 203 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 proteins, respectively. Further, our contact-assisted models have much better quality than template-based models. Using our predicted contacts as restraints, we can (ab initio) fold 208 of the 398 membrane proteins with TMscore>0.5. By contrast, when the training proteins of our method are used as templates, homology modeling can only do so for 10 of them. One interesting finding is that even if we do not train our prediction models with any membrane proteins, our method works very well on membrane protein prediction. Finally, in recent blind CAMEO benchmark our method successfully folded 5 test proteins with a novel fold
    corecore