16 research outputs found

    Germline Predisposition and Copy Number Alteration in Pre-stage Lung Adenocarcinomas Presenting as Ground-Glass Nodules

    Get PDF
    Objective: Synchronous multiple ground-glass nodules (SM-GGNs) are a distinct entity of lung cancer which has been emerging increasingly in recent years in China. The oncogenesis molecular mechanisms of SM-GGNs remain elusive.Methods: We investigated single nucleotide variations (SNV), insertions and deletions (INDEL), somatic copy number variations (CNV), and germline mutations of 69 SM-GGN samples collected from 31 patients, using target sequencing (TRS) and whole exome sequencing (WES).Results: In the entire cohort, many known driver mutations were found, including EGFR (21.7%), BRAF (14.5%), and KRAS (6%). However, only one out of the 31 patients had the same somatic missense or truncated events within SM-GGNs, indicating the independent origins for almost all of these SM-GGNs. Many germline mutations with a low frequency in the Chinese population, and genes harboring both germline and somatic variations, were discovered in these pre-stage GGNs. These GGNs also bore large segments of copy number gains and/or losses. The CNV segment number tended to be positively correlated with the germline mutations (r = 0.57). The CNV sizes were correlated with the somatic mutations (r = 0.55). A moderate correlation (r = 0.54) was also shown between the somatic and germline mutations.Conclusion: Our data suggests that the precancerous unstable CNVs with potentially predisposing genetic backgrounds may foster the onset of driver mutations and the development of independent SM-GGNs during the local stimulation of mutagens

    Design of Punching Process and Assembly Process for Agricultural Machinery Chain Attachment

    No full text
    According to the study and analysis of the part structure characteristic and conventional process,the compound die processing scheme is selected. It means that the five processes of cutting,stamping,ribbing,punching and leveling can be completed on a pair of mold. Although the mold structure is relatively complex,but it is good way to save the number of mold,the processing efficiency is improved and the product quality stable is ensured. Also,the structure characteristics of the mold and the key problem the process should be paid attention are introduced

    Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO<sub>2</sub> Nanowire Catalysts

    No full text
    A series of CuO-based catalysts supported on the α-MnO2 nanowire were facilely synthesized and employed as the CO oxidation catalysts. The achieved catalysts were systematically characterized by XRD, SEM, EDS-mapping, XPS and H2-TPR. The catalytic performances toward CO oxidation had been carefully evaluated over these CuO-based catalysts. The effects of different loading methods, calcination temperatures and CuO loading on the low temperature catalytic activity of the catalyst were investigated and compared with the traditional commercial MnO2 catalyst with a block structure. It was found that the slenderness ratio of a CuO/α-MnO2 nanowire catalyst decreases with the increase in CuO loading capacity. The results showed that when CuO loading was 3 wt%, calcination temperature was 200 °C and the catalyst that was supported by the deposition precipitation method had the highest catalytic activity. Besides, the α-MnO2 nanowire-supported catalysts with excellent redox properties displayed much better catalytic performances than the commercial MnO2-supported catalyst. In conclusion, the CuO-based catalysts that are supported by α-MnO2 nanowires are considered as a series of promising CO oxidation catalysts

    Influences of the Tibetan plateau on tidal gravity detected by using SGs at Lhasa, Lijiang and Wuhan Stations in China

    No full text
    We accurately retrieved tidal gravimetric parameters using long-term continuous tidal gravity measurements recorded by superconducting gravimeters (SGs) at stations in Lhasa, Lijiang, and Wuhan, China. We used these results to investigate the influences of the special tectonic setting on regional tidal deformation. We accurately evaluated scale factors of SGs with high precision better than 0.06%. We carefully removed the effects of barometric pressure and oceanic loading from tidal gravity observations. We did not observe any obvious differences in amplitude factors for main tidal gravity waves for the stations in Lhasa and Lijiang. In the plateau area, we found the amplitude factor to be about 0.34% larger than that in the plain (Wuhan). Our study shows for the first time that the main reason for such tidal gravity anomalies can be explained by the influence of the special tectonic setting in the Tibetan Plateau

    Early-Age Mechanical Characteristics and Microstructure of Concrete Containing Mineral Admixtures under the Environment of Low Humidity and Large Temperature Variation

    No full text
    The application of concrete containing mineral admixtures was attempted in Northwest China in this study, where the environment has the characteristics of low humidity and large temperature variation. The harsh environment was simulated by using an environmental chamber in the laboratory and four types of concrete were prepared, including ordinary concrete and three kinds of mineral admixture concretes with different contents of fly ash and blast-furnace slag. These concretes were cured in the environmental chamber according to the real curing conditions during construction. The compression strength, fracture properties, SEM images, air-void characteristics, and X-ray diffraction features were researched at the early ages of curing before 28 d. The results showed that the addition of fly ash and slag can improve the compression strength and fracture properties of concrete in the environment of low humidity and large temperature variation. The optimal mixing of mineral admixture was 10% fly ash and 20% slag by replacing the cement in concrete, which can improve the compression strength, initial fracture toughness, unstable fracture toughness, and fracture energy by 23.9%, 25.2%, 45.3%, and 22.6%, respectively, compared to ordinary concrete. Through the analysis of the microstructure of concrete, the addition of fly ash and slag can weaken the negative effects of the harsh environment of low humidity and large temperature variation on concrete microstructure and cement hydration

    Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    No full text
    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms
    corecore