100,804 research outputs found

    Higher-spin Realisations of the Bosonic String

    Get PDF
    It has been shown that certain WW algebras can be linearised by the inclusion of a spin--1 current. This provides a way of obtaining new realisations of the WW algebras. Recently such new realisations of W3W_3 were used in order to embed the bosonic string in the critical and non-critical W3W_3 strings. In this paper, we consider similar embeddings in W2,4W_{2,4} and W2,6W_{2,6} strings. The linearisation of W2,4W_{2,4} is already known, and can be achieved for all values of central charge. We use this to embed the bosonic string in critical and non-critical W2,4W_{2,4} strings. We then derive the linearisation of W2,6W_{2,6} using a spin--1 current, which turns out to be possible only at central charge c=390c=390. We use this to embed the bosonic string in a non-critical W2,6W_{2,6} string.Comment: 8 pages. CTP TAMU-10/95

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Liouville and Toda Solitons in M-theory

    Full text link
    We study the general form of the equations for isotropic single-scalar, multi-scalar and dyonic pp-branes in superstring theory and M-theory, and show that they can be cast into the form of Liouville, Toda (or Toda-like) equations. The general solutions describe non-extremal isotropic pp-branes, reducing to the previously-known extremal solutions in limiting cases. In the non-extremal case, the dilatonic scalar fields are finite at the outer event horizon.Comment: Latex, 10 pages. Minor corrections to text and titl

    Collective flow of open and hidden charm in Au+Au collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We study the collective flow of open charm mesons and charmonia in Au+Au collisions at s\sqrt{s} = 200 GeV within the hadron-string-dynamics (HSD) transport approach. The detailed studies show that the coupling of D,DˉD,\bar{D} mesons to the light hadrons leads to comparable directed and elliptic flow as for the light mesons. This also holds approximately for J/ΨJ/\Psi mesons since more than 50% of the final charmonia for central and mid-central collisions stem from D+DˉD+\bar{D} induced reactions in the transport calculations. The transverse momentum spectra of D,DˉD,\bar{D} mesons and J/ΨJ/\Psi's are only very moderately changed by the (pre-)hadronic interactions in HSD which can be traced back to the collective flow generated by elastic interactions with the light hadrons.Comment: 9 pages, 8 figures, Phys. Rev. C, in pres

    Study of 0-π\pi phase transition in hybrid superconductor-InSb nanowire quantum dot devices

    Full text link
    Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating novel intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition between Kondo correlations and superconductivity in Josephson quantum dot (QD) devices results in two different ground states and the occurrence of a 0-π\pi quantum phase transition. Here we report on transport measurements on hybrid superconductor-InSb nanowire QD devices with different device geometries. We demonstrate a realization of continuous gate-tunable ABSs with both 0-type levels and π\pi-type levels. This allow us to manipulate the transition between 0 and π\pi junction and explore charge transport and spectrum in the vicinity of the quantum phase transition regime. Furthermore, we find a coexistence of 0-type ABS and π\pi-type ABS in the same charge state. By measuring temperature and magnetic field evolution of the ABSs, the different natures of the two sets of ABSs are verified, being consistent with the scenario of phase transition between the singlet and doublet ground state. Our study provides insights into Andreev transport properties of hybrid superconductor-QD devices and sheds light on the crossover behavior of the subgap spectrum in the vicinity of 0-π\pi transition

    The perfect spin injection in silicene FS/NS junction

    Full text link
    We theoretically investigate the spin injection from a ferromagnetic silicene to a normal silicene (FS/NS), where the magnetization in the FS is assumed from the magnetic proximity effect. Based on a silicene lattice model, we demonstrated that the pure spin injection could be obtained by tuning the Fermi energy of two spin species, where one is in the spin orbit coupling gap and the other one is outside the gap. Moreover, the valley polarity of the spin species can be controlled by a perpendicular electric field in the FS region. Our findings may shed light on making silicene-based spin and valley devices in the spintronics and valleytronics field.Comment: 6 pages, 3 figure

    Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe_{1-x}Ru_x)_2As_2

    Full text link
    We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe1x_{1-x}Rux_x)2_2As2_2 for a wide range of Ru concentrations (0.15 \leq \emph{x} \leq 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.Comment: 4 pages, 4 figure

    Impurity and edge roughness scattering in armchair graphene nanoribbons: Boltzmann approach

    Full text link
    The conductivity of armchair graphene nanoribbons in the presence of short-range impurities and edge roughness is studied theoretically using the Boltzmann transport equation for quasi-one-dimensional systems. As the number of occupied subbands increases, the conductivity due to short-range impurities converges towards the two-dimensional case. Calculations of the magnetoconductivity confirm the edge-roughness-induced dips at cyclotron radii close to the ribbon width suggested by the recent quantum simulations

    A Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and excited charmed baryon states

    Full text link
    We derive a Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and low-lying negative-parity excited charmed baryon states, in the heavy quark limit. We discuss the restriction from this sum rule on form factors and compare it with some models.Comment: 10 pages, RevTex, no figure, Alberta Thy--26--9
    corecore