12 research outputs found

    Mechanical Behavior of Liquid Nitrile Rubber-Modified Epoxy Resin under Static and Dynamic Loadings: Experimental and Constitutive Analysis

    No full text
    Quasi-static and dynamic compression experiments were performed to study the influence of liquid nitrile rubber (LNBR) on the mechanical properties of epoxy resin. The quasi-static experiments were conducted by an electronic universal machine under strain rates of 0.0001/s and 0.001/s, while a Split Hopkinson Pressure Bar (SHPB) system was adopted to perform the dynamic tests for strain rates up to 5600/s. The standard Zhu-Wang-Tang (ZWT) nonlinear viscoelastic model was chosen to predict the elastic behavior of LNBR/epoxy composites under a wide range of strain rates. After some necessary derivation and data fitting, a set of model parameters for the tested materials were finally obtained. Meanwhile, the incremented form of the ZWT nonlinear viscoelastic model were deduced and implemented into the user material program of LS-DYNA. A simulation-test contrast had been performed to verify the validity and feasibility of the algorithm. The results showed that the viscoelastic behavior of epoxy resin can be effectively simulated

    Comparative study of eggshell antibacterial effectivity in precocial and altricial birds using Escherichia coli.

    No full text
    In this study, we compared the antibacterial effectivity of the eggs of six precocial and four altricial bird species using Escherichia coli, based on their eggshell traits. The ultrastructure of eggshell was observed using a scanning electron microscope (SEM). According to SEM results, eggs from precocial birds (chicken, turkey, quail, duck, ostrich, and goose) had cuticle on the eggshells, while eggs from altricial birds (pigeon, budgerigar, munia, and canary) did not. The environment/selection pressure may induce the divergent evolution process in eggs of precocial and altricial birds. The E. coli experiment results showed that chicken, turkey, quail, duck, and goose eggs, with a high cuticle opacity, exhibited a much lower E. coli penetration rate. In contrast, the eggs with poor (ostrich) or without (pigeon, budgerigar, munia, and canary) cuticle exhibited a higher penetration rate. It is suggested that cuticle is a main barrier against bacterial penetration in precocial birds' eggs. Turkey and quail eggs showed the lowest E. coli contamination rate (3.33% and 2.22%, respectively), probably because of the tightly connected nanosphere structure on their cuticle. As for altricial birds' eggs, the eggs of budgerigar, munia, and canary with small pore diameter (0.57 to 1.22 μm) had a lower E. coli penetration rate than pigeon eggs (45.56%, 66.67%, 50%, and 97.78%, respectively, P < 0.05), indicating that pore diameter played a significant role in defending against bacterial trans-shell invasion. We found that eggshell thickness and pore area decreased with egg size. The cuticle quality had no relationship with egg size, but was closely related to the bird species. The E. coli penetration rate of altricial birds' eggs was significantly higher than that of precocial birds' eggs, mainly because the pores are exposed on the eggshell surface and cuticle protection is absent. This study provides detailed information on the eggshell cuticle, which gives insight into the cuticle evolution process that occurred in precocial and altricial bird species. Moreover, the results of E. coli penetration may help understanding the antibacterial behavior in birds

    Bivariate genomic analysis identifies a hidden locus associated with bacteria hypersensitive response in Arabidopsis thaliana

    No full text
    Multi-phenotype analysis has drawn increasing attention to high-throughput genomic studies, whereas only a few applications have justified the use of multivariate techniques. We applied a recently developed multi-trait analysis method on a small set of bacteria hypersensitive response phenotypes and identified a single novel locus missed by conventional single-trait genome-wide association studies. The detected locus harbors a minor allele that elevates the risk of leaf collapse response to the injection of avrRpm1-modified Pseudomonas syringae (P =1.66e-08). Candidate gene AT3G32930 with in the detected region and its co-expressed genes showed significantly reduced expression after P. syringae interference. Our results again emphasize that multi-trait analysis should not be neglected in association studies, as the power of specific multi-trait genotype-phenotype maps might only be tractable when jointly considering multiple phenotypes

    The Properties of Linezolid, Rifampicin, and Vancomycin, as Well as the Mechanism of Action of Pentamidine, Determine Their Synergy against Gram-Negative Bacteria

    No full text
    Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine–antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms

    Accurate Local Modulation of Graphene Terahertz Metamaterials by Direct Electron Beam Irradiation

    No full text
    Electrical gating has been typically used for Graphene-based devices to deliver high performance with superior electrical controllability. In this study, we utilize direct electron beam irradiation to attain the electrical controllability of graphene. The newly established system combines terahertz time-domain spectroscopy (TDS) with scanning electron microscopy (SEM). We experimentally demonstrate the precise localized tuning of graphene terahertz metamaterials, as the size and position of the electron beam generated by SEM are highly controllable. Furthermore, graphene metamaterials with different chemical potentials are simulated, and the results are highly consistent with the experiments

    Accurate Local Modulation of Graphene Terahertz Metamaterials by Direct Electron Beam Irradiation

    No full text
    Electrical gating has been typically used for Graphene-based devices to deliver high performance with superior electrical controllability. In this study, we utilize direct electron beam irradiation to attain the electrical controllability of graphene. The newly established system combines terahertz time-domain spectroscopy (TDS) with scanning electron microscopy (SEM). We experimentally demonstrate the precise localized tuning of graphene terahertz metamaterials, as the size and position of the electron beam generated by SEM are highly controllable. Furthermore, graphene metamaterials with different chemical potentials are simulated, and the results are highly consistent with the experiments

    Study of Combined Effect of Bacteriophage vB3530 and Chlorhexidine on the Inactivation of Pseudomonas aeruginosa

    No full text
    Abstract Background Chlorhexidine (CHG) is a disinfectant commonly used in hospitals. However, it has been reported that the excessive use of CHG can cause resistance in bacteria to this agent and even to other clinical antibiotics. Therefore, new methods are needed to alleviate the development of CHG tolerance and reduce its dosage. This study aimed to explore the synergistic effects of CHG in combination with bacteriophage against CHG-tolerant Pseudomonas aeruginosa (P. aeruginosa) and provide ideas for optimizing disinfection strategies in clinical environments as well as for the efficient use of disinfectants. Methods The CHG-tolerant P. aeruginosa strains were isolated from the First Affiliated Hospital of Wenzhou Medical University in China. The bacteriophage vB3530 was isolated from the sewage inlet of the hospital, and its genome was sequenced. Time-killing curve was used to determine the antibacterial effects of vB3530 and chlorohexidine gluconate (CHG). The phage sensitivity to 16 CHG-tolerant P. aeruginosa strains and PAO1 strain was detected using plaque assay. The emergence rate of resistant bacterial strains was detected to determine the development of phage-resistant and CHG-tolerant strains. Finally, the disinfection effects of the disinfectant and phage combination on the surface of the medical devices were preliminarily evaluated. Results The results showed that (1) CHG combined with bacteriophage vB3530 significantly inhibited the growth of CHG-resistant P. aeruginosa and reduced the bacterial colony forming units (CFUs) after 24 h. (2) The combination of CHG and bacteriophage inhibited the emergence of phage-resistant and CHG-tolerant strains. (3) The combination of CHG and bacteriophage significantly reduced the bacterial load on the surface of medical devices. Conclusions In this study, the combination of bacteriophage vB3530 and CHG presented a combined inactivation effect to CHG-tolerant P. aeruginosa and reduced the emergence of strains resistant to CHG and phage. This study demonstrated the potential of bacteriophage as adjuvants to traditional disinfectants. The use of bacteriophage in combination with commercial disinfectants might be a promising method for controlling the spread of bacteria in hospitals

    Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi

    No full text
    <p>Carbon and nutrients as well as suspended solids (SS) removal by chemically enhanced primary treatment (CEPT) were conducted in the Qingshan wastewater treatment plant in Huangshi, Hubei Province. Feasibility of this process for wastewater treatment were investigated in detail by comparing the removal performance of three inorganic chemical coagulants (polyaluminium chloride, polyaluminium ferric chloride [PAFC] and poly ferric sulfate) individual or couple with poly acrylamide, optimizing the conditions during CEPT by both single factor analysis and orthogonal test designs. The results of this study demonstrated that CEPT turned out to be an effective method for wastewater treatment, with PAFC as the optimal coagulant, which showed preeminent removal capacity for chemical oxygen demand, total phosphorus and SS. The optimal working condition could be at pH 7.0, settling time 15 min, and velocity gradient of 174.80 and 15.56 s<sup>−1</sup> for mixing and reaction phase respectively. While the coagulant dosage depends on raw water attributes, which had a decisive effect on CEPT treatment performances. However, the three coagulants behaved poorly in nitrogen removal.</p
    corecore