16 research outputs found

    Sox2 Suppresses Gastric Tumorigenesis in Mice

    Get PDF
    SummarySox2 expression marks gastric stem and progenitor cells, raising important questions regarding the genes regulated by Sox2 and the role of Sox2 itself during stomach homeostasis and disease. By using ChIP-seq analysis, we have found that the majority of Sox2 targets in gastric epithelial cells are tissue specific and related to functions such as endoderm development, Wnt signaling, and gastric cancer. Unexpectedly, we found that Sox2 itself is dispensable for gastric stem cell and epithelial self-renewal, yet Sox2+ cells are highly susceptible to tumorigenesis in an Apc/Wnt-driven mouse model. Moreover, Sox2 loss enhances, rather than impairs, tumor formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent transcription and upregulating intestinal metaplasia-associated genes, providing a mechanistic basis for the observed phenotype. Together, these data identify Sox2 as a context-dependent tumor suppressor protein that is dispensable for normal tissue regeneration but restrains stomach adenoma formation through modulation of Wnt-responsive and intestinal genes

    UiO-66 nanoparticles combat influenza A virus in mice by activating the RIG-I-like receptor signaling pathway

    No full text
    Abstract The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 μg mL−1 and 60 mg kg−1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine. Graphical Abstrac

    Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers

    No full text
    Gastric cancer (GC) is a deadly disease with limited treatment options. Recent studies with PD-1 inhibition have shown promising results in GC, but key questions remain regarding which GC subclass may respond best. In other cancers, expression of the PD-1 ligand PD-L1 has been shown to identify cancers with greater likelihood of response to PD-1 blockade. We here show with immunohistochemistry that Epstein-Barr Virus (EBV)+ GCs (n = 32) have robust PD-L1 expression not seen in other GCs. In EBV+ GC, we observed PD-L1 staining in tumor cells in 50% (16/32) and immune cells in 94% (30/32) of cases. Among EBV-negative GCs, PD-L1 expression within tumors cells was observed only in cases with microsatellite instability (MSI), although 35% of EBV-/MSS GCs possessed PD-L1 expression of inflammatory cells. Moreover, distinct classes of GC showed different patterns of PD-L1+ immune cell infiltrations. In both EBV+ and MSI tumors, PD-L1+ inflammatory cells were observed to infiltrate the tumor. By contrast, such cells remained at the tumor border of EBV-/MSS GCs. Consistent with these findings, we utilized gene expression profiling of GCs from The Cancer Genome Atlas study to demonstrate that an interferon-Îł driven gene signature, an additional proposed marker of sensitivity to PD-1 therapy, were enriched in EBV+ and MSI GC. These data suggest that patients with EBV+ and MSI GC may have greater likelihood of response to PD-1 blockade and that EBV and MSI status should be evaluated as variables in clinical trials of these emerging inhibitors

    A Non-Synonymous Single Nucleotide Polymorphism in the HJURP Gene Associated with Susceptibility to Hepatocellular Carcinoma among Chinese.

    No full text
    HJURP (Holliday Junction-Recognizing Protein) plays dual roles in DNA repair and in accurate chromosome segregation during mitosis. We examined whether the single nucleotide polymorphisms (SNPs) of HJURP were associated with the risk of occurrence of hepatocellular carcinoma (HCC) among chronic hepatitis B virus (HBV) carriers from well-known high-risk regions for HCC in China.Twenty-four haplotype-tagging SNPs across HJURP were selected from HapMap data using the Haploview software. We genotyped these 24 SNPs using the using Sequenom's iPLEX assay in the Fusui population, consisting of 348 patients with HCC and 359 cancer-free controls, and further investigated the significantly associated SNP using the TaqMan assay in the Haimen population, consisting of 100 cases and 103 controls. The genetic associations with the risk of HCC were analyzed by logistic regression.We observed an increased occurrence of HCC consistently associated with A/C or C/C genotypes of the non-synonymous SNP rs3771333 compared with the A/A genotype in both the Fusui and Haimen populations, with a pooled odds ratio 1.82 (95% confidence interval, 1.33-2.49; P = 1.9 × 10-4). Case-only analysis further indicated that carriers of the at-risk C allele were younger than those carrying the A/A genotype (P = 0.0016). In addition, the expression levels of HJURP in C allele carriers were lower than that in A/A genotype carriers (P = 0.0078 and 0.0010, for mRNA and protein levels, respectively).Our findings suggest that rs3771333 in HJURP may play a role in mediating the susceptibility to HCC among Chinese

    Semiquantitative PCR for <i>HJURP</i>.

    No full text
    <p>Expression of <i>HJURP</i> for the three different genotypes of rs3771333 was measured in RNA from Epstein-Barr virus (EBV)-transformed blood lymphocyte cell lines derived from 53 unrelated Chinese individuals. Forty-three individuals carry A/A, 9 carry A/C and 1 carrys C/C genotype. Normalization for mRNA quantity was performed with human <i>GAPDH</i> control primers for each sample. The horizontal bars indicate the mean values for each genotype, with the mean value of A/A carriers designated as 1. We found that the expression of <i>HJURP</i> mRNA in C allele carriers had a lower level compared with the A/A carriers (<i>P</i> = 0.0078; <i>t</i> test).</p
    corecore