121 research outputs found

    The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model

    Get PDF
    In this paper, we consider the iterative properties of positive solutions for a general Hadamard-type singular fractional turbulent flow model involving a nonlinear operator. By developing a double monotone iterative technique we firstly establish the uniqueness of positive solutions for the corresponding model. Then we carry out the iterative analysis for the unique solution including the iterative schemes converging to the unique solution, error estimates, convergence rate and entire asymptotic behavior. In addition, we also give an example to illuminate our results

    Anti-asthmatic effect of Ping-Chuan Formula in asthmatic mice, and its molecular mechanism of action

    Get PDF
    Purpose: To investigate the anti-asthmatic effect of Ping-Chuan Formula (PCF) in a mouse model, and the associated molecular mechanisms.Methods: Asthma mice were induced using ovalbumin (OVA), and PCF (600 mg/kg) was administered to the mice for 4 weeks. Sections of lung tissues were examined microscopically. The expressions of interleukins (ILs), interferon (IFN)-γ, transforming growth factor (TGF)-β were assayed, while lung tissue expressions of Toll like receptor (TLR)-4, GATA binding protein (GATA)-3, Ox40 ligand (OX40L), indoleamine 2,3-dioxygenase (IDO), and forkhead box P3 (Foxp3) determined. The T box expressed in T cells (T-bet) was evaluated using western blotting. The expressions of MHC II and co-stimulators (CD 11c, CD 80 and CD 86) of dendritic cells (DCs) were determined by flow cytometry.Results: PCF decreased inflammation in lung, and also down-regulated IL-4, -6, -17 and TGF-β (p < 0.01), whereas IL-10 and IFN-γ expressions were up-regulated (p < 0.01). Moreover, PCF decreased the expressions of TLR-4, GATA-3 and OX40L in lung tissue, and promoted Foxp3, IDO and T-bet. Besides, PCF decreased the levels of MHC II and co-stimulators (CD 80 and CD 86) on the surface of DCs.Conclusion: PCF exerts anti-asthmatic effect in mice via inhibition of inflammation, and modulation of MHC II and co-stimulators on the surface of DCs. These findings suggest that PCF is a promising candidate drug for treating asthma in humans

    Effects of tMa-Xin-Di-Tan decoction on ovalbumin-induced allergic asthma in mice

    Get PDF
    Purpose: To investigate the effect of the Ma-Xin-Di-Tan (MXDT) decoction on  ovalbumin-induced allergic asthma (AA) in mice.Methods: Asthma was induced in mice by ovalbumin (OVA) injection, and different doses of MXDT (150, 300, and 600 mg/kg/day) were administered orally for 28 days. Pathological changes in lung tissues were examined, while levels of cytokines, including interleukin (IL)-4, IL-6, IL-17, interferon (IFN)-γ, and transforming growth factor (TGF)-β, were determined using enzyme-linked immunosorbent assays (ELISAs) of the bronchoalveolar lavage fluid. Toll-like receptor (TLR)-4,  GATA-binding protein (GATA)-3, Ox40 ligand (OX40L), indoleamine  2,3-dioxygenase (IDO), forkhead box P3 (Foxp3), and T box expressed in T cells (T-bet) levels were determined in lung tissues by western blot analysis.Results: MXDT inhibited the inflammatory reaction of lung tissues in  OVA-challenged mice. After treatment with MXDT, levels of IL-4, IL-6, IL-17, and TGF-β were downregulated, whereas IFN-γ levels were upregulated. In addition,  MXDT decreased TLR-4, GATA-3, and OX40L levels in lung tissues but increased the expression of Foxp3, T-bet, and IDO.Conclusion: MXDT has antiallergic effects on OVA-induced AA in mice; the possible molecular mechanisms might involve the inhibition of inflammatory reactions and modulation of Th1/Th2 cytokine balance.Keywords: Ma-Xin-Di-Tan decoction, Allergic asthma, Inflammatory reactions, Th1/Th

    Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson's Disease: A Network Meta-Analysis

    Get PDF
    Background: Deep brain stimulation (DBS) is considered an effective treatment option for Parkinson's disease (PD). Several studies have demonstrated the efficacy of neurostimulation in patients with advanced PD. The subthalamic nucleus (STN), the internal globus pallidus (GPi), ventral intermediate nucleus (Vim), and pedunculopontine nucleus (PPN) are reportedly effective DBS targets for control of Parkinsonian tremors. However, there is no consensus on the ideal target for DBS in patients with Parkinson's disease. Only a few studies have directly compared the efficacy of DBS of the Vim, STN, and GPi. Therefore, we searched PubMed, Embase, Cochrane Library, and other databases for observational studies, extracted data on unified Parkinson's disease rating scale (UPDRS) scores and performed a comprehensive network meta-analysis of different strategies of DBS and compared the efficiency of DBS at different targets.Methods: Forest plot was used to examine the overall efficiency of DBS; cumulative probability value was used to rank the strategies under examination. A node-splitting model was employed to assess consistency of reported outcomes inconsistency. A total of 16 studies which focused on UPDRS improvement were included in the network meta-analysis.Results: By comparing the overall efficiency associated with each target, we confirmed the efficacy of DBS therapy in PD. Our findings revealed similar efficacy of DBS targeted at GPi and STN in the on-medication phase [GPi-3.9 (95% CI −7.0 to −0.96); STN-3.1 (−5.9 to −0.38)]; however, in the off-medication phase, Vim-targeted DBS was associated with better improvement in UPDRS scores and could be a choice as a DBS target for tremor-dominant Parkinsonism.Conclusions: Our findings will help improve clinical application of DBS

    Atmospheric observation-based estimation of fossil fuel CO_2 emissions from regions of central and southern California

    Get PDF
    Combustion of fossil fuel is the dominant source of greenhouse gas emissions to the atmosphere in California. Here, we describe radiocarbon (^(14)CO_2) measurements and atmospheric inverse modeling to estimate fossil fuel CO_2 (ffCO_2) emissions for 2009–2012 from a site in central California, and for June 2013–May 2014 from two sites in southern California. A priori predicted ffCO_2 mixing ratios are computed based on regional atmospheric transport model (WRF-STILT) footprints and an hourly ffCO_2 prior emission map (Vulcan 2.2). Regional inversions using observations from the central California site suggest that emissions from the San Francisco Bay Area (SFBA) are higher in winter and lower in summer. Taking all years together, the average of a total of fifteen 3-month inversions from 2009 to 2012 suggests ffCO_2 emissions from SFBA were within 6 ± 35% of the a priori estimate for that region, where posterior emission uncertainties are reported as 95% confidence intervals. Results for four 3-month inversions using measurements in Los Angeles South Coast Air Basin (SoCAB) during June 2013–May 2014 suggest that emissions in SoCAB are within 13 ± 28% of the a priori estimate for that region, with marginal detection of any seasonality. While emissions from the SFBA and SoCAB urban regions (containing ~50% of prior emissions from California) are constrained by the observations, emissions from the remaining regions are less constrained, suggesting that additional observations will be valuable to more accurately estimate total ffCO_2 emissions from California as a whole

    FABP4-mediated lipid droplet formation in Streptococcus uberis-infected macrophages supports host defence

    Get PDF
    Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections

    Taurine reprograms mammary-gland metabolism and alleviates inflammation induced by Streptococcus uberis in mice

    Get PDF
    Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis

    Global existence and temporal decay for the 3D compressible Hall-magnetohydrodynamic system

    Get PDF
    In this paper, we are concerned with the 3D compressible Hall-magnetohydrodynamic system in the whole space. We prove the global existence and temporal decay rates of the solutions to the system when the initial data are close to a stable equilibrium state by using a pure energy method
    • …
    corecore