5,122 research outputs found

    Fully gapped superconducting state in Au2Pb: a natural candidate for topological superconductor

    Full text link
    We measured the ultra-low-temperature specific heat and thermal conductivity of Au2_2Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature Tc≈T_c \approx 1.05 K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes Δ1\Delta_1(0)/kBTck_BT_c = 1.38 and Δ2\Delta_2(0)/kBTck_BT_c = 5.25. From the thermal conductivity measurements, a negligible residual linear term κ0/T\kappa_0/T in zero field and a slow field dependence of κ0/T\kappa_0/T at low field are obtained. These results suggest that Au2_2Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductor if Au2_2Pb is indeed one.Comment: 6 pages, 4 figure

    Spatial memory impairment by TRPC1 depletion is ameliorated by environmental enrichment

    Get PDF
    published_or_final_versio

    An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    Full text link
    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of the momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in a straight section of a storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.Comment: Accepted by Nuclear Inst. and Methods in Physics Research,

    Enhanced electron correlations in the new binary stannide PdSn4: a homologue of the Dirac nodal arc semimetal PtSn4

    Get PDF
    The advent of nodal-line semi-metals, i.e. systems in which the conduction and valence bands cross each other along a closed trajectory (line or loop) inside the Brillouin zone, has opened up a new arena for the exploration of topological condensed matter in which, due to a vanishing density of states near the Fermi level, electron correlation effects may also play an important role. In spite of this conceptual richness however, material realization of nodal-line (loop) fermions is rare, with PbTaSe2, ZrSiS and PtSn4 the only promising known candidates. Here we report the synthesis and physical properties of a new compound PdSn4 that is isostructural with PtSn4 yet possesses quasiparticles with significantly enhanced effective masses. In addition, PdSn4 displays an unusual polar angular magnetoresistance which at a certain field orientation, varies linearly with field up to 55 Tesla. Our study suggests that, in association with its homologue PtSn4 whose low-lying excitations were recently claimed to possess Dirac node arcs, PdSn4 may be a promising candidate in the search for novel topological states with enhanced correlation effects.Comment: 6 figures, 1 tabl

    Extraordinary quasiparticle scattering and bandwidth-control by dopants in iron-based superconductors

    Full text link
    The diversities in crystal structures and ways of doping result in extremely diversified phase diagrams for iron-based superconductors. With angle-resolved photoemission spectroscopy (ARPES), we have systematically studied the effects of chemical substitution on the electronic structure of various series of iron-based superconductors. In addition to the control of Fermi surface topology by heterovalent doping, we found two more extraordinary effects of doping: 1. the site and band dependencies of quasiparticle scattering; and more importantly 2. the ubiquitous and significant bandwidth-control by both isovalent and heterovalent dopants in the iron-anion layer. Moreover, we found that the bandwidth-control could be achieved by either applying the chemical pressure or doping electrons, but not by doping holes. Together with other findings provided here, these results complete the microscopic picture of the electronic effects of dopants, which facilitates a unified understanding of the diversified phase diagrams and resolutions to many open issues of various iron-based superconductors.Comment: 12 pages, 9 figure
    • …
    corecore