122 research outputs found

    Karar Ağacı Algoritması Kullanılarak Çin Topraklarındaki Orta Dereceli Okul Öğrencilerine İlişkin Jeo-Uzamsal Düşünme Yeteneğinin Tahmin Edilmesi

    Get PDF
    Predicting secondary school students' geospatial thinking ability can provide targeted guidance for teachers. To date, few scholars have focused on predicting students’ geospatial thinking ability. In this paper, we address this gap by constructing a prediction model based on the decision tree algorithm, to predict the geospatial thinking ability of secondary school students. A total of 1029 secondary school students were surveyed using the Spatial Thinking Ability Test, the Students' Geography Learning Status Questionnaire, and the Middle Students Motivation Test. Our model indicates that geospatial thinking ability can be predicted by nine factors, in order of importance: academic achievement in geography, geography learning strategy, geography classroom environment, gender, learning initiative, learning goals, extra-curricular time spent learning geography, ego-enhancement drive, and interest in learning geography. The model accuracy is 81.25%. Specifically, our study is the first to predict geospatial thinking ability. It provides a tool for teachers that can help them identify and predict students' geospatial thinking ability, which is conducive to designing better teaching plans and making adjustments to the curriculum.Orta dereceli okul öğrencilerinin jeo-uzamsal düşünme yeteneklerinin tahmin edilmesi öğretmenler için hedefe yönelik rehberlik sağlayabilir. Şimdiye kadar az sayıda bilim insanı, öğrencilerin jeo-uzamsal düşünme yeteneklerinin tahmin edilmesine odaklanmıştır. Bu makalede, orta dereceli okul öğrencilerinin jeo-uzamsal düşünme yeteneklerinin tahmin edilmesi amacıyla karar ağacı algoritmasına dayanan bir tahmin modeli oluşturarak bu boşluğu doldurmayı amaçlıyoruz. Uzamsal Düşünme Yeteneği Testi, Öğrencilerin Coğrafya Öğrenimi Durumu Anketi ve Orta Dereceli Okul Öğrencileri Motivasyon Testi kullanılarak toplam 1029 orta dereceli okul öğrencisine anket uygulanmıştır. Modelimiz, jeo-uzamsal düşünme yeteneğinin dokuz etmenle tahmin edilebileceğine işaret etmektedir. Önem sırasına göre bu etmenler; coğrafya dersindeki akademik başarı, coğrafya öğrenimi stratejisi, coğrafya sınıf ortamı, cinsiyet, öğrenme inisiyatifi, öğrenme hedefleri, coğrafya öğreniminde harcanan müfredat harici zaman, benlik geliştirme dürtüsü ve coğrafya öğrenimine ilgi şeklindedir. Model doğruluk oranı %81,25’tir. Özellikle, çalışmamız jeo-uzamsal düşünme yeteneğinin tahmin edilmesine yönelik ilk çalışmadır. Öğretmenlere öğrencilerin jeo-uzamsal düşünme yeteneklerini saptamalarına ve tahmin etmelerine yardımcı olabilecek bir araç sunan çalışmamız böylelikle daha iyi eğitim planları hazırlanmasında ve müfredatta düzenlemeler yapılmasında fayda sağlayacaktır

    Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion.</p> <p>Results</p> <p>C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7<sup>ErbB2</sup>) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130<sup>Cas</sup>, as well as interactions among these proteins. C3G abolished ethanol-mediated p130<sup>Cas</sup>/JNK interaction.</p> <p>Conclusions</p> <p>C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.</p

    Alcohol Promotes Mammary Tumor Growth through Activation of VEGF-Dependent Tumor Angiogenesis

    Get PDF
    Alcohol consumption has been recognized as a risk factor for breast cancer. Experimental studies demonstrate that alcohol exposure promotes the progression of existing mammary tumors. However, the mechanisms underlying this effect remain unclear. In the present study, the role of vascular endothelial growth factor (VEGF) in alcohol promotion of breast cancer development was investigated using a mouse xenograft model of mammary tumors and a three-dimensional (3D) tumor/endothelial cell co-culture system. For the mouse xenograft model, mouse E0771 breast cancer cells were implanted into the mammary fat pad of C57BL6 mice. These mice were exposed to alcohol in their drinking water. For the 3D co-culture system, E0771 cells and MDA-MB231 breast cancer cells were co-cultured with SVEC4-10EE2 and human umbilical vein endothelial cells, respectively. The results demonstrated that alcohol increased tumor angiogenesis and accelerated tumor growth. Furthermore, it appeared that alcohol induced VEGF expression in breast cancer cells in vitro and in vivo. Blocking VEGF signaling by SU5416 inhibited tumor angiogenesis in the 3D tumor/endothelial cell co-culture system. Furthermore, injection of SU5416 into mice inhibited alcohol-promoted mammary tumor growth in vivo. These results indicate that alcohol may promote mammary tumor growth by stimulating VEGF-dependent angiogenesis

    M2 Polarization of Macrophages Facilitates Arsenic-Induced Cell Transformation of Lung Epithelial Cells

    Get PDF
    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages

    Double-Stranded RNA-Dependent Protein Kinase Regulates the Motility of Breast Cancer Cells

    Get PDF
    Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway

    Alcohol Consumption Promotes Colorectal Carcinoma Metastasis via a CCL5-Induced and AMPK-Pathway-Mediated Activation of Autophagy

    Get PDF
    There is a definite relationship between alcohol consumption and colorectal cancer (CRC) development. We investigated effect of alcohol consumption on CRC patients’ progression and prognosis by utilizing epidemiological data and found patients with alcohol consumption increased risks of tumor-node-metastasis (TNM), organ metastasis and poorer prognosis. Because their tumor tissues displayed increased expression of C-C chemokine ligand 5 (CCL5), we hypothesized CCL5 might participate in cancer progression in such patients. Ethanol increased the secretion of CCL5 in two CRC cell lines, HT29 and DLD-1. Treatment with CCL5 directly increased migratory ability of these cells, whereas neutralization or knockdown of CCL5 can partially block alcohol-stimulated migration. We further investigated underlying mechanism of CCL5-induced migration. Our results indicated that effects of CCL5 on migration are mediated by the ability of CCL5 to induce autophagy, a cellular process known to be critical for migration. Using high-throughput sequencing and western blotting, we found induction of autophagy by CCL5 takes place via AMPK pathway. Aforementioned ethanol increases CCL5 secretion, CCL5 activates autophagy through AMPK pathway, and autophagy increases migration was confirmed by experiments with autophagy or AMPK inhibitors. To sum up, our study demonstrates that chronic alcohol consumption may promote metastasis of CRC through CCL5-induced autophagy

    Chronic Ethanol Exposure Enhances the Aggressiveness of Breast Cancer: The Role of p38γ

    Get PDF
    Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12–48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway

    ErbB2 and p38γ MAPK Mediate Alcohol-Induced Increase in Breast Cancer Stem Cells and Metastasis

    Get PDF
    Background: Both epidemiological and experimental studies suggest that excessive alcohol exposure increases the risk for breast cancer and enhances metastasis/recurrence. We have previously demonstrated that alcohol enhanced the migration/invasion of breast cancer cells and cancer cells overexpressing ErbB2/HER2 were more sensitive to alcohol exposure. However, the underlying mechanisms remain unclear. This study was designed to investigate the mechanisms underlying alcohol-enhanced aggressiveness of breast cancer. Cancer stem cells (CSCs) play a critical role in cancer metastasis and recurrence. Methods: We evaluated the effect of chronic alcohol exposure on mammary tumor development/metastasis in MMTV-neu transgenic mice and investigated the cell signaling in response to alcohol exposure in breast cancer cells overexpressing ErbB2/HER2. Results and discussion: Chronic alcohol exposure increased breast cancer stem cell-like CSC population and enhanced the lung and colon metastasis in MMTV-neu transgenic mice. Alcohol exposure caused a drastic increase in CSC population and mammosphere formation in breast cancer cells overexpressing ErbB2/HER2. Alcohol exposure stimulated the phosphorylation of p38γ MAPK (p-p38γ) which was co-localized with phosphorylated ErbB2 and CSCs in the mammary tumor tissues. In vitro results confirmed that alcohol activated ErbB2/HER2 and selectively increased p-p38γ MAPK as well as the interaction between p38γ MAPK and its substrate, SAP97. However, alcohol did not affect the expression/phosphorylation of p38α/β MAPKs. In breast cancer cell lines, high expression of ErbB2 and p-p38γ MAPK was generally correlated with more CSC population. Blocking ErbB2 signaling abolished heregulin β1- and alcohol-stimulated p-p38γ MAPK and its association with SAP97. More importantly, p38γ MAPK siRNA significantly inhibited an alcohol-induced increase in CSC population, mammosphere formation and migration/invasion of breast cancer cells overexpressing ErbB2. Conclusions: p38γ MAPK is downstream of ErbB2 and plays an important role in alcohol-enhanced aggressiveness of breast cancer. Therefore, in addition to ErbB2/HER2, p38γ MAPK may be a potential target for the treatment of alcohol-enhanced cancer aggressiveness
    corecore