2,273 research outputs found

    Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein

    Get PDF
    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression

    Evaluating the effect of data standardization and validation on patient matching accuracy

    Get PDF
    Objective This study evaluated the degree to which recommendations for demographic data standardization improve patient matching accuracy using real-world datasets. Materials and Methods We used 4 manually reviewed datasets, containing a random selection of matches and nonmatches. Matching datasets included health information exchange (HIE) records, public health registry records, Social Security Death Master File records, and newborn screening records. Standardized fields including last name, telephone number, social security number, date of birth, and address. Matching performance was evaluated using 4 metrics: sensitivity, specificity, positive predictive value, and accuracy. Results Standardizing address was independently associated with improved matching sensitivities for both the public health and HIE datasets of approximately 0.6% and 4.5%. Overall accuracy was unchanged for both datasets due to reduced match specificity. We observed no similar impact for address standardization in the death master file dataset. Standardizing last name yielded improved matching sensitivity of 0.6% for the HIE dataset, while overall accuracy remained the same due to a decrease in match specificity. We noted no similar impact for other datasets. Standardizing other individual fields (telephone, date of birth, or social security number) showed no matching improvements. As standardizing address and last name improved matching sensitivity, we examined the combined effect of address and last name standardization, which showed that standardization improved sensitivity from 81.3% to 91.6% for the HIE dataset. Conclusions Data standardization can improve match rates, thus ensuring that patients and clinicians have better data on which to make decisions to enhance care quality and safety

    Predictors of Circuit Health in Neonatal Patients Receiving Extracorporeal Membrane Oxygenation (ECMO)

    Get PDF
    To identify predictors of neonatal ECMO circuit health, a retrospective analysis of circuit functional pressure and flow parameters as well as infant clotting values were collected 48 h prior to and 24 h post circuit change. Circuit impairment was defined as need for partial or total circuit change. Statistical analysis used multivariate statistics and non-parametric Mann–Whitney U-test with possible non-normality of measurements. A total of 9764 ECMO circuit and clotting values in 21 circuits were analyzed. Circuit delta-P mean, and maximum values increased from 8.62 to 48.59 mmHg (p \u3c 0.011) and 16.00 to 53.00 mmHg (p \u3c 0.0128) respectively prior to need for circuit change. Maximum and mean Pump Flow Revolutions per minute (RPM) increased by 75% (p \u3c 0.0043) and 81% (p \u3c 0.0057), respectively. Mean plasma free hemoglobin (pfHb) increased from 26.45 to 76.00 mg/dl, (p \u3c 0.0209). Sweep, venous pressure, and clotting parameters were unaffected. ECMO circuit delta-P, RPM, and pfHb were early predictors of circuit impairment

    Electrospun nanosized cellulose fibers using ionic liquids at room temperature

    Get PDF
    Aiming at replacing the noxious solvents commonly employed, ionic-liquid-based solvents have been recently explored as novel non-volatile and non-flammable media for the electrospinning of polymers. In this work, nanosized and biodegradable cellulose fibers were obtained by electrospinning at room temperature using a pure ionic liquid or a binary mixture of two selected ionic liquids. The electrospinning of 8 wt% cellulose in 1-ethyl-3-methylimidazolium acetate medium (a low viscosity and room temperature ionic liquid capable of efficiently dissolving cellulose) showed to produce electrospun fibers with average diameters within (470 ± 110) nm. With the goal of tailoring the surface tension of the spinning dope, a surface active ionic liquid was further added in a 0.10 : 0.90 mole fraction ratio. Electrospun cellulose fibers from the binary mixture composed of 1-ethyl-3-methylimidazolium acetate and 1-decyl-3-methylimidazolium chloride ionic liquids presented average diameters within (120 ± 55) nm. Scanning electron microscopy, X-ray diffraction analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric assays were used as core methods to evaluate the structural integrity, morphology and crystallinity of the raw, electrospun, and regenerated samples of cellulose. Moreover, the photoluminescence spectra of both raw and electrospun fibers were acquired, and compared, indicating that the cellulose emitting centers are not affected by the dissolution of cellulose in ionic liquids. Finally, the use of non-volatile solvents in electrospinning coupled to a water coagulation bath allows the recovery of the ionic fluid, and represents a step forward into the search of environmentally friendly alternatives to the conventional approaches

    VScript: Controllable Script Generation with Visual Presentation

    Full text link
    In order to offer a customized script tool and inspire professional scriptwriters, we present VScript. It is a controllable pipeline that generates complete scripts, including dialogues and scene descriptions, as well as presents visually using video retrieval. With an interactive interface, our system allows users to select genres and input starting words that control the theme and development of the generated script. We adopt a hierarchical structure, which first generates the plot, then the script and its visual presentation. A novel approach is also introduced to plot-guided dialogue generation by treating it as an inverse dialogue summarization. The experiment results show that our approach outperforms the baselines on both automatic and human evaluations, especially in genre control

    High‐Saturated‐Fat Diet Increases Circulating Angiotensin‐Converting Enzyme, Which Is Enhanced by the rs4343 Polymorphism Defining Persons at Risk of Nutrient‐Dependent Increases of Blood Pressure

    Get PDF
    Background Angiotensin‐converting enzyme (ACE) plays a major role in blood pressure regulation and cardiovascular homeostasis. Contrary to the assumption that ACE levels are stable, circulating ACE has been shown to be altered in obesity and weight loss. We sought to examine effects of a high‐saturated‐fat (HF) diet on ACE within the NUtriGenomic Analysis in Twins (NUGAT) study. Methods and Results Forty‐six healthy and nonobese twin pairs initially consumed a carbohydrate‐rich, low‐fat diet over a period of 6 weeks to standardize for nutritional behavior prior to the study, followed by 6 weeks of HF diet under isocaloric conditions. After 6 weeks of HF diet, circulating ACE concentrations increased by 15% (P=1.6×10−30), accompanied by an increased ACE gene expression in adipose tissue (P=3.8×10−6). Stratification by ACE rs4343, a proxy for the ACE insertion/deletion polymorphism (I/D), revealed that homozygous carriers (GG) of the variant had higher baseline ACE concentrations (P=7.5×10−8) and additionally showed a 2‐fold increase in ACE concentrations in response to the HF diet as compared to non‐ or heterozygous carriers (AA/AG, P=2×10−6). GG carriers also responded with higher systolic blood pressure as compared to AA/AG carriers (P=0.008). The strong gene‐diet interaction was confirmed in a second independent, cross‐sectional cohort, the Metabolic Syndrome Berlin Potsdam (MeSyBePo) study. Conclusions The HF‐diet‐induced increase of ACE serum concentrations reveals ACE to be a potential molecular link between dietary fat intake and hypertension and cardiovascular disease (CVD). The GG genotype of the ACE rs4343 polymorphism represents a robust nutrigenetic marker for an unfavorable response to high‐saturated‐fat diets. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01631123

    Lasting deficit in inhibitory control with mild traumatic brain injury

    Get PDF
    Abstract Being able to focus on a complex task and inhibit unwanted actions or interfering information (i.e., inhibitory control) are essential human cognitive abilities. However, it remains unknown the extent to which mild traumatic brain injury (mTBI) may impact these critical functions. In this study, seventeen patients and age-matched healthy controls (HC) performed a variant of the Stroop task and attention-demanding 4-choice response tasks (4CRT) with identical stimuli but two contexts: one required only routine responses and the other with occasional response conflicts. The results showed that mTBI patients performed equally well as the HC when the 4CRT required only routine responses. However, when the task conditions included occasional response conflicts, mTBI patients with even a single concussion showed a significant slow-down in all responses and higher error rates relative to the HC. Results from event-related functional magnetic resonance imaging (efMRI) revealed altered neural activity in the mTBI patients in the cerebellum-thalamo-cortical and the fronto-basal-ganglia networks regulating inhibitory control. These results suggest that even without apparent difficulties in performing complex attention-demanding but routine tasks, patients with mTBI may experience long-lasting deficits in regulating inhibitory control when situations call for rapid conflict resolutions

    Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy.

    No full text
    The exosome complex is the most important RNA processing machinery within the cell. Mutations in its subunits EXOSC8 and EXOSC3 cause pontocerebellar hypoplasia, spinal muscular atrophy (SMA) and central nervous system demyelination. We present a patient with SMA-like phenotype carrying a homozygous mutation in RBM7-a subunit of the nuclear exosome targeting (NEXT) complex-which is known to bind and carry specific subtypes of coding and non-coding RNAs to the exosome. The NEXT complex with other protein complexes is responsible for the substrate specificity of the exosome. We performed RNA-sequencing (RNA-seq) analysis on primary fibroblasts of patients with mutations in EXOSC8 and RBM7 and gene knock-down experiments using zebrafish as a model system. RNA-seq analysis identified significantly altered expression of 62 transcripts shared by the two patient cell lines. Knock-down of rbm7, exosc8 and exosc3 in zebrafish showed a common pattern of defects in motor neurons and cerebellum. Our data indicate that impaired RNA metabolism may underlie the clinical phenotype by fine tuning gene expression which is essential for correct neuronal differentiation
    corecore