17 research outputs found

    Assessment of global health risk of antibiotic resistance genes

    Get PDF
    Antibiotic resistance genes (ARGs) have accelerated microbial threats to human health in the last decade. Many genes can confer resistance, but evaluating the relative health risks of ARGs is complex. Factors such as the abundance, propensity for lateral transmission and ability of ARGs to be expressed in pathogens are all important. Here, an analysis at the metagenomic level from various habitats (6 types of habitats, 4572 samples) detects 2561 ARGs that collectively conferred resistance to 24 classes of antibiotics. We quantitatively evaluate the health risk to humans, defined as the risk that ARGs will confound the clinical treatment for pathogens, of these 2561 ARGs by integrating human accessibility, mobility, pathogenicity and clinical availability. Our results demonstrate that 23.78% of the ARGs pose a health risk, especially those which confer multidrug resistance. We also calculate the antibiotic resistance risks of all samples in four main habitats, and with machine learning, successfully map the antibiotic resistance threats in global marine habitats with over 75% accuracy. Our novel method for quantitatively surveilling the health risk of ARGs will help to manage one of the most important threats to human and animal health

    Metagenomic insight into the global dissemination of the antibiotic resistome

    Get PDF
    The global crisis in antimicrobial resistance continues to grow. Estimating the risks of antibiotic resistance transmission across habitats is hindered by the lack of data on mobility and habitat-specificity. Metagenomic samples of 6092 are analyzed to delineate the unique core resistomes from human feces and seven other habitats. This is found that most resistance genes (≈85%) are transmitted between external habitats and human feces. This suggests that human feces are broadly representative of the global resistome and are potentially a hub for accumulating and disseminating resistance genes. The analysis found that resistance genes with ancient horizontal gene transfer (HGT) events have a higher efficiency of transfer across habitats, suggesting that HGT may be the main driver for forming unique but partly shared resistomes in all habitats. Importantly, the human fecal resistome is historically different and influenced by HGT and age. The most important routes of cross-transmission of resistance are from the atmosphere, buildings, and animals to humans. These habitats should receive more attention for future prevention of antimicrobial resistance. The study will disentangle transmission routes of resistance genes between humans and other habitats in a One Health framework and can identify strategies for controlling the ongoing dissemination and antibiotic resistance

    Negative effects of abamectin on soil microbial communities in the short term

    Get PDF
    With the widespread use of abamectin in agriculture, there is increasing urgency to assess the effects of abamectin on soil microorganisms. Here, we treated plant–soil microcosms with abamectin at concentrations of 0.1 and 1.0 mg/kg and quantified the impacts of abamectin on bulk and rhizosphere soil microbial communities by shotgun metagenomics after 7 and 21 days of exposure. Although abamectin was reported to be easily degradable, it altered the composition of the soil microbial communities, disrupted microbial interactions, and decreased community complexity and stability after 7 days of exposure. After treatment with abamectin at a concentration of 1.0 mg/kg, some opportunistic human diseases, and soil-borne pathogens like Ralstonia were enriched in the soil. However, most ecological functions in soil, particularly the metabolic capacities of microorganisms, recovered within 21 days after abamectin treatment. The horizontal and vertical gene transfer under abamectin treatments increased the levels of antibiotic resistance genes dissemination. Overall, our findings demonstrated the negative effects of abamectin on soil ecosystems in the short-term and highlight a possible long-term risk to public and soil ecosystem health associated with antibiotic resistance genes dissemination

    Global biogeography of microbes driving ocean ecological status under climate change

    Get PDF
    Altres ajuts: Fundación Ramón Areces project CIVP20A6621.Microbial communities play a crucial role in ocean ecology and global biogeochemical processes. However, understanding the intricate interactions among diversity, taxonomical composition, functional traits, and how these factors respond to climate change remains a significant challenge. Here, we propose seven distinct ecological statuses by systematically considering the diversity, structure, and biogeochemical potential of the ocean microbiome to delineate their biogeography. Anthropogenic climate change is expected to alter the ecological status of the surface ocean by influencing environmental conditions, particularly nutrient and oxygen contents. Our predictive model, which utilizes machine learning, indicates that the ecological status of approximately 32.44% of the surface ocean may undergo changes from the present to the end of this century, assuming no policy interventions. These changes mainly include poleward shifts in the main taxa, increases in photosynthetic carbon fixation and decreases in nutrient metabolism. However, this proportion can decrease significantly with effective control of greenhouse gas emissions. Our study underscores the urgent necessity for implementing policies to mitigate climate change, particularly from an ecological perspective

    Antimicrobial peptides in the global microbiome : biosynthetic genes and resistance determinants

    No full text
    Altres ajuts: the Fundación Ramón Areces grant CIVP20A6621Antimicrobial peptides are a promising new class of antimicrobials that could address the antibiotic resistance crisis, which poses a major threat to human health. These peptides are present in all kingdoms of life, but especially in microorganisms, having multiple origins in diverse taxa. To date, there has been no global study on the diversity of antimicrobial peptides, the hosts in which these occur, and the potential for resistance to these agents. Here, we investigated the diversity and number of antimicrobial peptides in four main habitats (aquatic, terrestrial, human, and engineered) by analyzing 52,515 metagenome-assembled genomes. The number of antimicrobial peptides was higher in the human gut microbiome than in other habitats, and most hosts of antimicrobial peptides were habitat-specific. The relative abundance of genes that confer resistance to antimicrobial peptides varied between habitats and was generally low, except for the built environment and on human skin. The horizontal transfer of potential resistance genes among these habitats was probably constrained by ecological barriers. We systematically quantified the risk of each resistance determinant to human health and found that nearly half of them pose a threat, especially those that confer resistance to multiple AMPs and polymyxin B. Our results help identify the biosynthetic potential of antimicrobial peptides in the global microbiome, further identifying peptides with a low risk of developing resistance

    Metagenomic analysis of antibiotic-resistance genes and viruses released from glaciers into downstream habitats

    No full text
    Altres ajuts: the Fundación Ramón Areces grant CIVP20A6621Glaciers serve as effective reservoirs of antibiotic resistance genes (ARGs) and viruses for millions of years. Climate change and anthropogenic activity have accelerated the melting of glaciers, but the patterns of release of ARGs and viruses from melting glaciers into downstream habitats remain unknown. We analyzed 171 metagenomic samples from glaciers and their downstream habitats and found that the abundance and diversity of ARGs were higher in glaciers (polar and plateau glaciers) than downstream habitats (Arctic Ocean, Qinghai Lake, and Yangtze River Basin), with the diversity of viruses having the opposite pattern. Proteobacteria and Actinobacteria were the main potential hosts of ARGs and viruses, and the richness of ARGs carried by the hosts was positively correlated with viral abundance, suggesting that the transmission of viruses in the hosts could disseminate ARGs. Source tracking indicated that >18 % of the ARGs and >25 % of the viruses detected in downstream habitats originated from glaciers, demonstrating that glaciers could be one of the potential sources of ARGs and viruses in downstream habitats. Increased solar radiation and emission of carbon dioxide mainly influenced the release of the ARGs and viruses from glaciers into downstream habitats. This study provides a systematic insight demonstrating the release of ARGs and viruses from the melting glaciers, potentially increasing ecological pressure

    Machine learning predicts the impact of antibiotic properties on the composition and functioning of bacterial community in aquatic habitats.

    No full text
    In the past decades, hundreds of antibiotics have been isolated from microbial metabolites or have been artificially synthesized for protecting humans, animals and crops from microbial infections. Their everlasting usage results in impacts on the microbial community composition and causes well-known collateral damage to the functioning of microbial communities. Nevertheless, the impact of different antibiotic properties on aquatic microbial communities have so far only poorly been disentangled. Here we characterized the environmental risk of 50 main kinds of antibiotics from 9 classes at a concentration of 10 μg/L for aquatic bacterial communities via metadata analysis combined with machine learning. Metadata analysis showed that the alpha diversity of the bacterial community increased only after treatment with aminoglycoside and β-lactam antibiotics, while its structure was changed by almost all tested antibiotics. The antibiotic treatment also disturbed the functions of the bacterial community, especially with regard to metabolic pathways, including amino acids, cofactors, vitamins, xenobiotics and carbohydrate metabolism. The critical characteristics (atom stereocenter count, number of hydrogen atoms in the antibiotic, and the adipose water coefficient) of antibiotics affecting the composition of the bacterial community in aquatic habitats were screened by machine learning. The key characteristics of antibiotics affecting the function bacterial communities were the number of hydrogen atoms, molecular weight and complexity. In summary, by developing machine learning models and by performing metadata analysis, this study provides the relationship between the properties of antibiotics and their adverse impacts on aquatic microbial communities from a macro perspective. The study also provides guidance for the rational design of antibiotics.Environmental Biolog

    Effect of chlorpyrifos on freshwater microbial community and metabolic capacity of zebrafish.

    Get PDF
    Chlorpyrifos is a widely used organophosphorus insecticide because of its high efficiency and overall effectiveness, and it is commonly detected in aquatic ecosystems. However, at present, the impact of chlorpyrifos on the aquatic micro-ecological environment is still poorly understood. Here, we established aquatic microcosm systems treated with 0.2 and 2.0 µg/L chlorpyrifos, and employed omics biotechnology, including metagenomics and 16S rRNA gene sequencing, to investigate the effect of chlorpyrifos on the composition and functional potential of the aquatic and zebrafish intestinal microbiomes after 7 d and 14 d chlorpyrifos treatment. After 14 d chlorpyrifos treatment, the aquatic microbial community was adversely affected in terms of its composition, structure, and stability, while its diversity showed only a slight impact. Most functions, especially capacities for environmental information processing and metabolism, were destroyed by chlorpyrifos treatment for 14 d. We observed that chlorpyrifos increased the number of risky antibiotic resistance genes and aggravated the growth of human pathogens. Although no clear effects on the structure of the zebrafish intestinal microbial community were observed, chlorpyrifos treatment did alter the metabolic capacity of the zebrafish. Our study highlights the ecological risk of chlorpyrifos to the aquatic environment and provides a theoretical basis for the rational use of pesticides in agricultural production.Environmental Biolog
    corecore