260 research outputs found

    Another push during urban developmeents: how to coordinate diverse patterns during developing of urban fringe areas

    Get PDF
    With the rapid developments of urbanization in China and the effluence of urban functions, most of the city borders have become very poor and behind in developments, who have lost characters of rural areas in one hand and onn the other hand not belong to urban area. Based on a large number of literature reading and field research years ago, this paper choose Zhuantang (an urban border in Hangzhou) as a area for case study. After China Academy of Art moved to Zhuantang, the existence of this special pushing (the college) and the town’s diversified developments, lead to a transformation of the urban morphology of Zhuantang. Generalizing the developmental model and strategy adopted by Zhuantang provides references to the sustainable development in urban borders.Peer Reviewe

    Design Thinking: A Model Development Based On Archived Documents

    Get PDF
    Publisher's Versio

    Using Time Deformation to Filter Nonstationary Time Series with Multiple Time-Frequency Structures

    Get PDF
    For nonstationary time series consisting of multiple time-varying frequency (TVF) components where the frequency of components overlaps in time, classical linear filters fail to extract components. The G-filter based on time deformation has been developed to extract components of multicomponent G-stationary processes. In this paper, we explore the wide application of the G-filter for filtering different types of nonstationary processes with multiple time-frequency structure. Simulation examples illustrate that the G-filter can be applied to filter a broad range of multicomponent nonstationary process where TVF components may in fact overlap in time

    Roles of immune microenvironment in the female reproductive maintenance and regulation: novel insights into the crosstalk of immune cells

    Get PDF
    Female fertility decline is an accumulative consequence caused by complex factors, among them, the disruption of the immune profile in female reproduction stands out as a crucial contributor. Presently, the effects of immune microenvironment (IME) on the female reproductive process have attracted increasing attentions for their dynamic but precisive roles. Immunocytes including macrophages, dendritic cells, T cells, B cells and neutrophils, with diverse subpopulations as well as high plasticity functioned dynamically in the process of female reproduction through indirect intercellular communication via specific cytokine release transduced by molecular signal networks or direct cell-cell contact to maintain the stability of the reproductive process have been unveiled. The immune profile of female reproduction in each stage has also been meticulously unveiled. Especially, the application of single-cell sequencing (scRNA-seq) technology in this process reveals the distribution map of immune cells, which gives a novel insight for the homeostasis of IME and provides a research direction for better exploring the role of immune cells in female reproduction. Here, we provide an all-encompassing overview of the latest advancements in immune modulation within the context of the female reproductive process. Our approach involves structuring our summary in accordance with the physiological sequence encompassing gonadogenesis, folliculogenesis within the ovaries, ovulation through the fallopian tubes, and the subsequent stages of embryo implantation and development within the uterus. Our overarching objective is to construct a comprehensive portrayal of the immune microenvironment (IME), thereby accentuating the pivotal role played by immune cells in governing the intricate female reproductive journey. Additionally, we emphasize the pressing need for heightened attention directed towards strategies that focus on immune interventions within the female reproductive process, with the ultimate aim of enhancing female fertility

    Decoupled measurement and modeling of interface reaction kinetics of ion-intercalation battery electrodes

    Full text link
    Ultrahigh rate performance of active particles used in lithium-ion battery electrodes has been revealed by single-particle measurements, which indicates a huge potential for developing high-power batteries. However, the charging/discharging behaviors of single particles at ultrahigh C-rates can no longer be described by the traditional electrochemical kinetics in such ion-intercalation active materials. In the meantime, regular kinetic measuring methods meet a challenge due to the coupling of interface reaction and solid-state diffusion processes of active particles. Here, we decouple the reaction and diffusion kinetics via time-resolved potential measurements with an interval of 1 ms, revealing that the classical Butler-Volmer equation deviates from the actual relation between current density, overpotential, and Li+ concentration. An interface ion-intercalation model is developed which considers the excess driving force of Li+ (de)intercalation in the charge transfer reaction for ion-intercalation materials. Simulations demonstrate that the proposed model enables accurate prediction of charging/discharging at both single-particle and electrode scales for various active materials. The kinetic limitation processes from single particles to composite electrodes are systematically revealed, promoting rational designs of high-power batteries

    Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases

    Get PDF
    Most human diseases are systems diseases, and systems biomarkers are better fitted for diagnostic, prognostic, and treatment monitoring purposes. To search for systems biomarker candidates, lactate dehydrogenase (LDH), a housekeeping protein expressed in all living cells, was investigated. To this end, we analyzed the serum LDH activities from 172,933 patients with 48 clinically defined diseases and 9528 healthy individuals. Based on the median values, we found that 46 out of 48 diseases, leading by acute myocardial infarction, had significantly increased (p  0.8) for hepatic encephalopathy and lung fibrosis

    G-Filtering Nonstationary Time Series

    Get PDF
    The classical linear filter can successfully filter the components from a time series for which the frequency content does not change with time, and those nonstationary time series with time-varying frequency (TVF) components that do not overlap. However, for many types of nonstationary time series, the TVF components often overlap in time. In such a situation, the classical linear filtering method fails to extract components from the original process. In this paper, we introduce and theoretically develop the G-filter based on a time-deformation technique. Simulation examples and a real bat echolocation example illustrate that the G-filter can successfully filter a G-stationary process whose TVF components overlap with time
    • …
    corecore