337 research outputs found

    Semiotics of the “chain of contempt” in Chinese media

    Get PDF

    Self-Calibrated Cross Attention Network for Few-Shot Segmentation

    Full text link
    The key to the success of few-shot segmentation (FSS) lies in how to effectively utilize support samples. Most solutions compress support foreground (FG) features into prototypes, but lose some spatial details. Instead, others use cross attention to fuse query features with uncompressed support FG. Query FG could be fused with support FG, however, query background (BG) cannot find matched BG features in support FG, yet inevitably integrates dissimilar features. Besides, as both query FG and BG are combined with support FG, they get entangled, thereby leading to ineffective segmentation. To cope with these issues, we design a self-calibrated cross attention (SCCA) block. For efficient patch-based attention, query and support features are firstly split into patches. Then, we design a patch alignment module to align each query patch with its most similar support patch for better cross attention. Specifically, SCCA takes a query patch as Q, and groups the patches from the same query image and the aligned patches from the support image as K&V. In this way, the query BG features are fused with matched BG features (from query patches), and thus the aforementioned issues will be mitigated. Moreover, when calculating SCCA, we design a scaled-cosine mechanism to better utilize the support features for similarity calculation. Extensive experiments conducted on PASCAL-5^i and COCO-20^i demonstrate the superiority of our model, e.g., the mIoU score under 5-shot setting on COCO-20^i is 5.6%+ better than previous state-of-the-arts. The code is available at https://github.com/Sam1224/SCCAN.Comment: This paper is accepted by ICCV'2

    The Roles of Social Capital in Online P2P Lending Markets Under Different Cultures: A Comparison of China and America

    Get PDF
    Online P2P (People-to-People or Peer-to-Peer) lending has very rapid development since it was appeared in 2005. In order to mitigate asymmetric information between borrowers and lenders, some online P2P market allows members building their social networks (such as Prosper, CommunityLend, PPDai etc). By empirical analyzing the transaction data of Prosper (largest P2P market in US) and PPDai (largest P2P market in China), the paper verifies that the social capital systems have a positive influence on borrower’s loan performance on the markets. However, on both markets, the loan interest rate mainly dependents on borrower’s hard information rather than their social capital. Furthermore, it concludes that borrower’ social network in PPDai is much more useful and effective than in Prosper by comparing the empirical results, which could be helpful for the credit system development of Chinese online P2P lending markets based on the conclusions

    An Ideal Compartmented Secret Sharing Scheme Based on Linear Homogeneous Recurrence Relations

    Get PDF
    Multipartite secret sharing schemes are those that have multipartite access structures. The set of the participants in those schemes is divided into several parts, and all the participants in the same part play the equivalent role. One type of such access structure is the compartmented access structure. We propose an ideal and efficient compartmented multi-secret sharing scheme based on the linear homogeneous recurrence (LHR) relations. In the construction phase, the shared secrets are hidden in some terms of the linear homogeneous recurrence sequence. In the recovery phase, the shared secrets are obtained by solving those terms in which the shared secrets are hidden. When the global threshold is tt, our scheme can reduce the computational complexity from O(nt1)O(n^{t-1}) to O(nmax(ti1)logn)O(n^{\max(t_i-1)}\log n), where ti<tt_i<t. The security of the proposed scheme is based on Shamir\u27s threshold scheme. Moreover, it is efficient to share the multi-secret and to change the shared secrets in the proposed scheme. That is, the proposed scheme can improve the performances of the key management and the distributed system

    FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data

    Get PDF
    Motivation: How chromatin folds in three-dimensional (3D) space is closely related to transcription regulation. As powerful tools to study such 3D chromatin conformation, the recently developed Hi-C technologies enable a genome-wide measurement of pair-wise chromatin interaction. However, methods for the detection of biologically meaningful chromatin interactions, i.e. peak calling, from Hi-C data, are still under development. In our previous work, we have developed a novel hidden Markov random field (HMRF) based Bayesian method, which through explicitly modeling the non-negligible spatial dependency among adjacent pairs of loci manifesting in high resolution Hi-C data, achieves substantially improved robustness and enhanced statistical power in peak calling. Superior to peak callers that ignore spatial dependency both methodologically and in performance, our previous Bayesian framework suffers from heavy computational costs due to intensive computation incurred by modeling the correlated peak status of neighboring loci pairs and the inference of hidden dependency structure

    Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Get PDF
    Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis
    corecore