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Abstract

Motivation: How chromatin folds in three-dimensional (3D) space is closely related to transcription

regulation. As powerful tools to study such 3D chromatin conformation, the recently developed

Hi-C technologies enable a genome-wide measurement of pair-wise chromatin interaction.

However, methods for the detection of biologically meaningful chromatin interactions, i.e. peak

calling, from Hi-C data, are still under development. In our previous work, we have developed a

novel hidden Markov random field (HMRF) based Bayesian method, which through explicitly mod-

eling the non-negligible spatial dependency among adjacent pairs of loci manifesting in high reso-

lution Hi-C data, achieves substantially improved robustness and enhanced statistical power in

peak calling. Superior to peak callers that ignore spatial dependency both methodologically and in

performance, our previous Bayesian framework suffers from heavy computational costs due to in-

tensive computation incurred by modeling the correlated peak status of neighboring loci pairs and

the inference of hidden dependency structure.

Results: In this work, we have developed FastHiC, a novel approach based on simulated field ap-

proximation, which approximates the joint distribution of the hidden peak status by a set of inde-

pendent random variables, leading to more tractable computation. Performance comparisons in

real data analysis showed that FastHiC not only speeds up our original Bayesian method by more

than five times, bus also achieves higher peak calling accuracy.

Availability and Implementation: FastHiC is freely accessible at:http://www.unc.edu/�yunmli/

FastHiC/

Contacts: yunli@med.unc.edu or ming.hu@nyumc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The spatial organizations of chromosomes play a critical role in

transcription regulation. In particular, regulatory elements such as

enhancers, often contact with the promoters of targeted genes by

forming long-range DNA looping. Understanding such 3D chroma-

tin conformation provides novel insights into the regulation mechan-

isms of gene expression (Gorkin et al., 2014). The recently

developed Hi-C technologies enable a genome-wide measurement of
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chromatin interaction (Lieberman-Aiden et al., 2009). In the Hi-C

data, the contact frequency between any two chromatin loci is meas-

ured by the number of paired-end reads spanning across them.

Higher read count indicates more frequent chromatin interaction

and closer spatial proximity.

The rapid accumulation of Hi-C data with high sequencing

depth enables the study of chromatin interaction at the unprece-

dented resolution (Jin et al., 2013; Rao et al., 2014). However, the

detection of biologically meaningful long-range chromatin inter-

actions poses great challenges. Most existing methods (Ay et al.,

2014; Jin et al., 2013; Rao et al., 2014) assume that the chromatin

interaction frequencies for different loci pairs are independent,

which is clearly invalid. If two loci show high interaction frequency,

their adjacent loci will be more likely to interact with each other. To

fill in this gap, we have recently developed a novel hidden Markov

random field based Bayesian (HMRFBayes) method to explicitly

model the spatial dependency among adjacent loci (Xu et al., 2016).

By borrowing information across neighborhood loci, HMRF

achieves substantially improved robustness and enhanced statistical

power.

While extremely promising, HMRFBayes is based on a Bayesian

framework which requires intensive computation. The key challenge

is to efficiently and effectively infer the dependency structure under-

lying the hidden peak status. To address this challenge, we de-

veloped a novel algorithm named FastHiC, which approximates the

joint distribution of the hidden peak status by a set of independent

random variables. Under such approximation, we adopted an EM

algorithm for statistical inference. Compared with HMRFBayes,

FastHiC not only speeds up by more than five times, but also

achieves higher peak calling accuracy.

2 Statistical model

We use the same HMRF model as in our previous work (Xu et al.,

2016). Our goal is to detect biologically meaningful chromatin inter-

actions among N loci. Let xij and eij represent the observed and ex-

pected chromatin contact frequency between loci i and j,

respectively ð1 � i < j � NÞ. Here, eij is known based on the pre-

specified background model (Ay et al., 2014; Jin et al., 2013). Let zij

be the hidden peak status: zij ¼ 1 indicates a biologically meaningful

interaction, while zij ¼ �1 indicates a random collision. We further

assume that xij follows a negative binomial distribution with mean

eij expfhðzij þ 1Þ=2g and over-dispersion /. Here, expfhg is the

signal-noise-ratio of the peak over the background. In the HMRF

model, we assume that xij’s are conditionally independent given the

hidden peak status zij, where zij follows an Ising distribution (Besag,

1974):

p zij

� �
jw

� �
¼ 1

WðwÞ exp w
X

i�i0j jþ j�j0j j¼1

zijzi0 j0

8<
:

9=
;:

Here, w is the parameter accounting for spatial dependency. Larger

w indicates higher spatial dependency. WðwÞ is the normalization

constant without explicit expression form.

The key challenge is the efficient and effective inference of

the spatial dependency parameter w. In our previous work (Xu

et al., 2016), we used the pseudo-likelihood (PL) to approximate the

Ising distribution, and devised a Gibbs sampler for statistical

inference.

PL zij

� �
jw

� �
¼

Y
1� i< j�N

pðzijjzi0j0 ; i� i0j j þ j� j0j j ¼ 1; wÞ:

However, in the PL approximation, the neighborhood of each

loci pair can still fluctuate, resulting in intractable computation of

w. To solve this problem, we developed a novel algorithm named

FastHiC, which uses the simulated field mij ¼ Eðzijjzi0 j0 ; i� i
0�� ��þ

j� j
0�� �� ¼ 1Þ to approximate the joint distribution of the peak status

implicated by the Ising distribution (Celeux et al., 2003), leading to

a modified pseudo-likelihood (MPL):

MPL zij

� �
jw

� �
¼

Y
1� i< j�N

pðzijjmi0 j0 ; i� i0j j þ j� j0j j ¼ 1; wÞ:

This MPL approximates the Ising distribution by a set of inde-

pendent random variables, enabling tractable computation of w.

FastHiC then adopts an EM algorithm for inference. Details of the

simulated field approximation and EM algorithm can be found in

Supplementary Material Section S1.

3 Results

We first conducted simulation study to compare the performance of

FastHiC with HMRFBayes (Supplementary Material Section S2).

These two methods achieved comparable statistical efficiency in par-

ameter estimations (Supplementary Table S1) and peak calling ac-

curacy (Supplementary Fig. S1 and Table S2). Noticeably, FastHiC

ran more than five times faster than HMRFBayes (Supplementary

Table S3), due to the novel implementation of simulated field

approximation.

Next, we re-analyzed the Hi-C data in human IMR90 cells (Jin

et al., 2013) where 2262 topological associated domains (TADs) were

identified (Dixon et al., 2012). We analyzed each TAD separately to

detect intra-TAD chromatin interactions at 4Kb resolution. We

didnot analyze inter-TAD chromatin interactions because low

sequencing depth for inter-TAD reads (the average number of intra-

TAD and inter-TAD reads are 58.91 and 1.57, respectively). Since we

have shown that HMRFBayes (Xu et al., 2016) outperforms AFC (Jin

et al., 2013) and Fit-Hi-C (Ay et al., 2014), in this work, we only

compared the performance of FastHiC and HMRFBayes

(Supplementary Table S4). We did not compare with HiCCUPS (Rao

et al., 2014) since its software is not publicly available. Overall,

FastHiC and HMRFBayes obtained highly similar peak calling re-

sults. The Spearman correlation coefficient of peak probabilities be-

tween FastHiC and HMRFBayes within each TAD has median 0.934

and standard deviation 0.121. In addition, we compared the peak

calling results from FastHiC and HMRFBayes with the chromatin

loops identified from the in situ Hi-C data (Rao et al., 2014). Figure

1A shows that peaks identified by FastHiC have slightly higher over-

lap with chromatin loops than peaks identified by HMRFBayes.

Overall, FastHiC and HMRFBayes achieved highly similar peak call-

ing accuracy in real Hi-C data in human IMR90 cells.

Next, we compared the computational time of four different

peak callers with different TAD sizes (Fig. 1B). In general, the run-

ning time increases quadratically with the TAD size. For all 2262

TADs, the average running time for FastHiC, HMRFBayes, AFC

and Fit-Hi-C are 428, 4134, 2605 and 19 s, respectively. FastHiC

runs much faster than HMRFBayes and AFC. Although Fit-Hi-C

runs faster than FastHiC, we have showed that the HMRF-based ap-

proach outperformed Fit-Hi-C in peak calling accuracy (Xu et al.,

2016). Compared with Fit-Hi-C, we believe that FastHiC achieves a

reasonable balance between speed and accuracy.

To further compare the performance of FastHiC and

HMRFBayes, we analyzed two additional Hi-C datasets in human

H1 embryonic stem cells (Dixon et al., 2015) and human GM12878
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lymphoblastic cells (Selvaraj et al., 2013). We detected intra-TAD

chromatin interactions at 40 kb resolution. To evaluate peak calling

accuracy, we compared the peak calling results from FastHiC and

HMRFBayes with the recently published ChIA-PET data on H1 (Ji

et al., 2015) and GM12878 cells (Tang et al., 2015). We found that

peaks identified from FastHiC show much higher overlap with chro-

matin loops detected from ChIA-PET data than those identified

from HMRFBayes, in both H1 (Fig. 1C and Supplementary Fig. S2)

and GM12878 cells (Fig. 1D). These results demonstrate that

FastHiC achieves higher peak calling accuracy than HMRFBayes.

In addition, we explored modeling the dependency structure

with broader neighborhood, but neither simulation studies nor real

data analysis showed performance improvement (Supplementary

Material Section S4).

4 Conclusion

In summary, we have developed FastHiC, a fast and accurate algorithm

to detect long-range chromatin interactions from Hi-C data. FastHiC

utilized the same hidden Markov random field model as in our previous

work (Xu et al., 2016), but with a novel implementation of the simu-

lated field approximation, leading to more than five times speed-up and

higher peak calling accuracy. We believe that FastHiC has potential to

become a useful tool in studying chromatin spatial organization.
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Fig. 1. (A) The overlap between in-situ Hi-C loops (Rao et al., 2014) and peaks identified by FastHiC and HMRFBayes. (B) Computational time of four peak callers.

(C) The overlap between ChIA-PET loops (Ji et al., 2015) and peaks identified by FastHiC and HMRFBayes in primed H1 cells. (D) The overlap between ChIA-PET

loops (Tang et al., 2015) and peaks identified by FastHiC and HMRFBayes in GM12878 cells
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