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The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a

fusion reactor. A model of the L-H transition is required to simulate the time dependence of

tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the

L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows

that the model contains three types of transitions: an oscillating transition, a sharp transition with

hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced

2-ODE model consisting of the full model restricted to the flow on the critical manifold is found

to contain all the same dynamics as the full model. This means that all the dynamics in

the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a

2-ODE model. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823719]

I. INTRODUCTION

The confinement of particles and energy and thereby the

performance of a fusion reactor are strongly influenced by

turbulent transport.1,2 The L- and H-modes are confinement

states of a toroidal plasma, referring to states of low and high

confinement, respectively. In the L-mode the transport is

generally increasing when the input power is increased, until

the edge heat flux exceeds a threshold value, where a trans-

port barrier forms at the edge of the plasma and the plasma

state enters the H-mode.3 The transition from the L- to the

H-mode is called the L-H transition, and it is observed by

spontaneously improved confinement properties of the

plasma. The L-H transition was first observed experimentally

in 1982 at the ASDEX tokamak4 and has since been rou-

tinely observed and controlled in fusion experiments.

Recent experiments,5,6 equipped with advanced diag-

nostics to provide spatial and temporal information, have

revealed detailed information of the so-called L-I-H transi-

tion. The L-I-H transition takes place when the power input

is slowly ramped up. The I-mode is an intermediate mode

between the L- and H-mode, characterized by an oscillatory

behavior. The I-mode is often referred to as the dithering

phase, and it corresponds to the T-mode observed in

predator-prey type models7–9 as considered in the present pa-

per. The experiments revealed the causality in the interaction

of turbulence, zonal flows, and mean flows. Zonal flows are

generated by the turbulence through the Reynolds stress and

form transport barriers. This in turn leads to steepening of

the pressure gradient in the edge regime. The zonal flow is

the predator and the turbulence the prey. A cyclic interaction

appears with oscillating turbulent intensity and zonal flow

strength. In each cycle the pressure gradient is stepwise

increased. In turn this leads to the build up of a mean equilib-

rium flow induced by the pressure gradient through the radial

force balance. Ultimately, the mean flow reaches a level suf-

ficient for setting up the edge transport barrier sustaining the

steep pressure gradient called the edge pedestal, and the

plasma enters the H-mode.

Despite thorough investigations of the L-H transition it

still lacks a first principle explanation. Models of the L-H tran-

sition might contribute to a better understanding of the under-

lying mechanisms. There exist several models6–10 consisting

of systems of ordinary differential equations (ODEs), which

try to describe the time evolution of key variables that charac-

terize the L-H transition in different regimes. These models av-

erage over or ignore the spatial dependency attempting to

achieve a minimal model that describes the most essential

physics of the L-H transition. Most of these models are popula-

tion models of the predator-prey type. Significant insight into

the L-H transition dynamics has been gained from these simple

population models. Other models11,12 include both a radial

space coordinate and the time as independent variables, mean-

ing they are systems of coupled partial differential equations.

In the present paper we analyze in detail the 3-ODE L-H

transition model proposed in Ref. 7. The purpose of the pa-

per is threefold. First we extend the bifurcation analysis in

Ref. 8. We provide a systematic study of the structural

changes of the bifurcation diagram as a function of the

remaining five parameters in the system. Second, we discuss

the statement in Ref. 13 that a proper model of the L-H tran-

sition should allow three types of transitions to occur: an

oscillating transition, a sharp transition with hysteresis, and a

smooth transition. It is claimed that a special three-parameter

bifurcation is a necessary ingredient for all the transitions to

occur. We use the findings from the bifurcation analysis to

show that the model from Ref. 7 does allow the three types

of transitions, even though it does not exhibit the special

three-parameter bifurcation. Finally, we apply geometric sin-

gular perturbation theory to reduce the 3-ODE system to a
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2-ODE system that contains all the same dynamics. This

shows that a 2-ODE system is sufficient for obtaining a mini-

mal model of the L-H transition.

II. THE 3-ODE L-H TRANSITION MODEL

We consider the L-H transition model proposed in Ref. 7.

The only independent variable in the model is the time t mak-

ing the model zero-dimensional in the physical space. The de-

pendent variables in the model are the drift wave turbulence

level E, the shear of the zonal flow Vzf , the gradient of the ion

pressure N , and the shear of the mean flow V. The model is a

system of three coupled first order ODEs in the variables

E; Vzf, and N together with the algebraic equation V ¼ c3N 2

relating the mean flow shear to the ion pressure gradient. The

model can be formulated as the following 3-ODE system:

d

dt
E ¼ EðN � a1E � a2c2

3N
4 � a3V2

zfÞ; (1a)

d

dt
Vzf ¼ Vzf

b1E
1þ b2c2

3N
4
� b3

 !
; (1b)

d

dt
N ¼ QðtÞ � N ðc1E þ c2Þ; (1c)

where ai; bi; ci; i ¼ 1; 2; 3 are parameters. Q represents the

input power and may depend on time. All parameters and the

function Q are assumed to be positive. Equation (1a) describes

the evolution of E. The first term on the right-hand side repre-

sents that the pressure gradient N generates drift wave turbu-

lence. The second term represents the nonlinear self-

saturation of drift waves. The third term represents

the suppression of drift waves by the mean flow. The fourth

term represents the suppression of drift waves by the zonal

flow. Equation (1b) describes the evolution of Vzf . The

first term on the right-hand side represents the generation of

zonal flow shear by Reynolds stress. The growth is inhibited

by the mean flow shear, which is modeled by a factor

1=ð1þ b2V2Þ. The second term represents collisional damp-

ing of the zonal flow shear. Equation (1c) describes the evolu-

tion of N . The first term on the right-hand side is the input

power Q. The second term represents the turbulent diffusion

of the profile by drift wave turbulence. The third term repre-

sents that the gradient decreases due to neoclassical transport.

The system (1) can be interpreted as a population model.

In this interpretation Vzf is a predator having E as prey and E
is a predator having N as prey.

A. Non-dimensionalizing the system

The system (1) has a total of nine parameters in addition

to the function Q(t). To reduce the number of parameters, the

system is non-dimensionalized by introducing new variables

and time

u ¼ a1a
1=3
2 c

2=3
3 E; v ¼ a

1=3
2 a3c

2=3
3 V2

zf ;

w ¼ a
1=3
2 c

2=3
3 N ; s ¼ a

�1=3
2 c

�2=3
3 t:

This results in the following rescaled system:

_u

_v

_w

0
B@

1
CA ¼ F ¼

f

g

h

0
B@

1
CA ¼

uðw� u� v� w4Þ

l1v
u

1þ l4w4
� l2

� �
l5ðr� wð1þ l3uÞÞ

0
BBB@

1
CCCA; (2)

where the overdot denotes differentiation with respect to s. Five

new dimensionless parameters and a new function r ¼ rðsÞ
have been introduced. These are

l1 ¼
2b1

a1

; l2 ¼
a1a

1=3
2 c

2=3
3 b3

b1

; l3 ¼
c1

a1a
1=3
2 c

2=3
3 c2

;

l4 ¼
b2

a
4=3
2 c

2=3
3

; l5 ¼ c2a
1=3
2 c

2=3
3 ;

and

rðsÞ ¼ a
1=3
2 c

2=3
3

c2

Qða1=3
2 c

2=3
3 sÞ:

The phase space of the system (2) is M¼ R3
þ. We have

chosen the same scaling as in Ref. 8, but we have defined the

two new parameters l3; l5 and the scaled input power func-

tion r in a different way which will be more convenient for

the dimension reduction in Sec. V.

B. Sweeping rate influence

We call the rate at which the heating power r changes in

time, that is dr=ds, the sweeping rate, and we consider how

the sweeping rate can influence solutions of the nonautono-

mous system (2). Fig. 1 shows three examples of numerical

FIG. 1. Numerical solutions of the system (2) with the parameter values l1 ¼ 18; l2 ¼ 0:08; l3 ¼ 2:8; l4 ¼ 1:8; l5 ¼ 8, and the initial condition uð0Þ ¼ vð0Þ
¼ wð0Þ ¼ 0:01 for three different sweeping rates: (a) rðsÞ ¼ 0:01s, (b) rðsÞ ¼ 0:005s, (c) rðsÞ ¼ 0:02s. The plots show the evolution of u, v, and w as functions

of time, s. The evolution of r has also been plotted for comparison.
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solutions to the system (2) with different sweeping rates. The

parameter values are chosen to give a solution that passes

through three different regimes: the L-mode, the T-mode,

and the QH-mode. The L-mode is a state of low confinement,

the T-mode a transient or intermediate state giving rise to

dithering, and the QH-mode a state of high confinement.

By comparing the three plots in Fig. 1 we see that differ-

ent sweeping rates result in significant differences in how the

solution looks. In Fig. 1(a) a sweeping rate of rðsÞ ¼ 0:01s
was used, to obtain a solution with the desired oscillating

behavior of the intermediate mode: The solution first spirals

towards an equilibrium, but it then starts to spiral away from

it again before an equilibrium state is obtained. In Fig. 1(b)

the sweeping rate was lowered to rðsÞ ¼ 0:005s. The inter-

mediate mode is no longer oscillating except at the transition

to and from this mode: The solution spirals quickly into an

equilibrium and stays in the equilibrium state until the transi-

tion to the QH-mode occurs. In Fig. 1(c) the sweeping rate

was raised to rðsÞ ¼ 0:02s, and the intermediate mode now

makes only a few oscillations with large amplitudes: The so-

lution spirals slowly towards an equilibrium, but it never

comes very near it before the transition to the QH-mode

occurs. Even though the sweeping rate only was lowered and

raised, respectively, by a factor of 2, the behavior changed

significantly. However, the qualitative behavior with the

three phases, i.e., a low-confinement, an intermediate, and a

high confinement phase, is unaffected by the sweeping rate.

III. BIFURCATION ANALYSIS OF THE L-H TRANSITION
MODEL

We now assume that the heating power r develops suffi-

ciently slowly in time such that we can ignore its time-

dependency and treat it as a constant parameter. Then the

system (2) can be analyzed as an autonomous system. r will

be treated as the main control parameter of the system.

A bifurcation analysis similar to the one given in the current

section can be found in Ref. 8. We have here added information

about how the intervals of existence and the stability of the equi-

librium points depend on the parameters li; i ¼ 1;…; 5. This

will be necessary for the determination of the criteria for obtain-

ing each of the three types of transitions in Sec. IV.

A. Nullclines

The nullclines of the system are the surfaces at which a

single component of the velocity vanishes. Understanding

the location of the nullclines is most useful to the analysis of

the system. The u- and the v-nullcline is each a union of two

surfaces while the w-nullcline is a single surface

N u ¼ fu ¼ 0g [ fu ¼ wð1� w3Þ � vg;
N v ¼ fv ¼ 0g [ fu ¼ l2ð1þ l4w4Þg;
N w ¼ fwð1þ l3uÞ ¼ rg:

Since the plane u¼ 0 belongs to the u-nullcline and the plane

v¼ 0 belongs to the v-nullcline, these two surfaces are invar-

iant manifolds of the system, meaning that if the solution

starts in one of these planes, it stays in that same plane for all

time. This implies that solutions cannot cross these surfaces.

In the plane w¼ 0, we have dw=dt � 0, meaning that solu-

tions starting in M cannot cross the plane w¼ 0 in forward

time. This makes the phase spaceM a forward invariant set.

All the nullcline surfaces are independent of v except the

surface u ¼ wð1� w3Þ � v belonging to the u-nullcline. For

each fixed w, curves on this surface decrease linearly in v. The

nullclines are hard to visualize in the three-dimensional phase

space, so instead the intersection curves of the nullclines with

the plane v¼ 0 (which is a part ofN v) are shown in Fig. 2.

The intersection of all three nullclines, S ¼ N u \ N v \
N w; consists of the equilibrium points. Since the plane v¼ 0

belongs to the v-nullcline, any intersection between the u-

nullcline and the w-nullcline in this plane is an equilibrium

point. In Fig. 2 it can be seen that there are three equilibrium

points in the plane v¼ 0 which are labeled as L, H, and QH.

The projection of a fourth equilibrium, which is the only point

where the three nullclines cross above the plane v¼ 0, is

marked with a T. This way of naming the equilibria is adopted

from Ref. 8. The L-equilibrium represents a state of low con-

finement, the H-equilibrium a state of higher confinement, the

QH-equilibrium represents a quiescent state of high confine-

ment, while the T-equilibrium represents the transient or inter-

mediate state giving rise to oscillations. We are interested in

the transition from the L- to the QH-equilibrium.

B. Positions of equilibria

For each of the four equilibrium points the position and

the criteria for being inside M are determined. The equilib-

rium points of the system (2) are found by solving

Fðu; v;wÞ ¼ ð0; 0; 0Þ>. This equation cannot be fully solved

analytically. Therefore we will for the L-, H-, and T-

equilibrium just give the equations that determine the posi-

tion of each equilibrium point.

1. The position of the QH-equilibrium

The QH-equilibrium is explicitly given by

ðuQH; vQH;wQHÞ ¼ ð0; 0; rÞ: (3)

The QH-equilibrium is insideM for all r � 0.

FIG. 2. Intersection curves of the nullclines in the plane v¼ 0 for the param-

eter values l1 ¼ 18; l2 ¼ 0:08; l3 ¼ 2:8; l4 ¼ 1:8; l5 ¼ 8, and r ¼ 1:1.

The equilibrium points labeled L, H, and QH lies in the plane v¼ 0, while

the equilibrium point labeled T is projected onto the plane v¼ 0.

102302-3 Dam et al. Phys. Plasmas 20, 102302 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.38.67.112 On: Thu, 12 Dec 2013 21:45:54



2. The position of the L-equilibrium

In Fig. 2 it is seen that the L-equilibrium is the first

intersection point between the two curves u ¼ wð1� w3Þ
belonging to N u and wð1þ l3uÞ ¼ r belonging to N w in

the plane v¼ 0. This means that the L-equilibrium is

ðuL; vL;wLÞ ¼ ðwLð1� w3
LÞ; 0;wLÞ; (4)

where wL is the smallest of the two positive roots of the fifth

order polynomial

PðwÞ ¼ l3w2ð1� w3Þ þ w� r: (5)

The polynomial P(w) is plotted in Fig. 3 for four different

values of r. The smallest positive root of P(w) is wL while

the greatest positive root of P is wH. It is seen that the roots

move closer to each other for r increasing from zero until

the two equilibria coincide and disappear in a saddle-node

bifurcation. The first derivative of the polynomial (5) is

P0ðwÞ ¼ l3wð2� 5w3Þ þ 1: (6)

Since P is concave downwards it always holds that

P0ðwLÞ > 0 and P0ðwHÞ < 0: (7)

The w-coordinate of the saddle-node bifurcation point is

characterized by PðwÞ ¼ P0ðwÞ ¼ 0, where the two positive

roots of P becomes a single-valued double root. For values

of r higher than this there are no solutions to PðwÞ ¼ 0,

meaning that neither the L-equilibrium or the H-equilibrium

exists. For a fixed value of l3 the w-coordinate of the saddle-

node bifurcation point is characterized by P0ðwsnÞ ¼ 0. The

value of r at the saddle-node bifurcation point is found by

solving for r in the equation PðwsnÞ ¼ 0, which yields

rsn ¼ l3w2
snð1� w3

snÞ þ wsn; l3 �
1

3
: (8)

The condition l3 � 1=3 ensures that wsn lies in the interval

0 � wsn � 1 such that usn ¼ wsnð1� w3
snÞ � 0, which makes

the saddle-node bifurcation occur inside M. For l3 < 1=3

the saddle-node bifurcation occurs outside of M, but the

L-equilibrium is still insideM in the interval 0 � r � 1. So

the L-equilibrium is insideM in the intervals

0 � r � 1 for l3 <
1

3

0 � r � rsn for l3 �
1

3
:

8>><
>>:

3. The position of the H-equilibrium

The H-equilibrium is

ðuH; vH;wHÞ ¼ ðwHð1� w3
HÞ; 0;wHÞ; (9)

where wH is the larger of the two positive roots of the poly-

nomial (5). A necessary condition for the H-equilibrium to

be inside M is that 0 � wH � 1 to ensure that uH � 0. The

H-equilibrium enters M at rtc2 ¼ 1 and disappears in a

saddle node bifurcation at rsn given by Eq. (8). So the

H-equilibrium is insideM in the interval

1 � r � rsn; l3 �
1

3
:

The H-equilibrium is located outside of M for any value of

r when l3 < 1=3.

4. The position of the T-equilibrium

The T-equilibrium is the intersection point between the

three surfaces v ¼ wð1� w3Þ � u belonging to N u; u ¼ l2

ð1þ l4w4Þ belonging to N v and wð1þ l3uÞ ¼ r belonging

to N w. So the T-equilibrium is implicitly characterized by

the point ðuT; vT;wTÞ, where

uT ¼ l2ð1þ l4w4
TÞ; (10a)

vT ¼ wTð1� w3
TÞ � uT; (10b)

wT ¼
r

1þ l3uT

: (10c)

By considering Fig. 2 we see that only the surface u ¼ l2

ð1þ l4w4Þ belonging to N v depends on l2, and this surface

moves upwards if l2 is increased. If this surface is moved suf-

ficiently upwards it will no longer intersect with the surface

u ¼ wð1� w3Þ � v. So for the T-equilibrium to exist at all, l2

must be sufficiently small. To determine exactly how small l2

must be we consider the v¼ 0 plane where we first determine

the w-coordinate at which the two curves u ¼ wð1� w3Þ
belonging to N u and u ¼ l2ð1þ l4w4Þ belonging to N v

have the same slope. By differentiating these functions with

respect to w we see that the slope of the first curve is

du=dw ¼ 1� 4w3, while the slope of the second curve is

du=dw ¼ 4l2l4w3. So these curves have the same slope at

w0 ¼
1

ð4ð1þ l2l4ÞÞ1=3
: (11)

For the T-equilibrium to exist the u-coordinate of the

T-equilibrium must at w ¼ w0 be smaller than the u-coordinate

FIG. 3. Plot of the polynomial (5) with l3 ¼ 2:8 for three different values of

r. The first non-negative root of this polynomial is the value of wL, and the

second positive root is the value of wH.
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of the L-equilibrium at w ¼ w0, that is, uTjwT¼w0
� uLjwL¼w0

.

By inserting the expressions for uL from Eq. (4) and uT from

Eq. (10a) this condition becomes l2ð1þ l4w4
0Þ � w0ð1� w3

0Þ.
By inserting the expression (11) for w0 into this inequality and

rearranging, the condition for the T-equilibrium to exist for

some value of r becomes l2 � l2;0, where l2;0 is the only pos-

itive solution to the equation

256ð1þ l2l4Þl3
2 � 27 ¼ 0:

Now assume that l2 � l2;0. Then there exists an interval of

r for which the T-equilibrium is insideM. A necessary con-

dition for the T-equilibrium to be insideM is that vT � 0. In

each of the endpoints of the interval of r for which the

T-equilibrium is insideM we have vT ¼ 0, and Eq. (10) that

characterizes the T-equilibrium becomes identical to the one

that characterizes the L-equilibrium and the H-equilibrium,

respectively. For the lowest value of r for which the

T-equilibrium is in M, it coincides with the L-equilibrium.

This occurs at rtc1 ¼ wtc1ð1þ l3utc1Þ in the point

ðutc1; vtc1;wtc1Þ ¼ ðwtc1ð1� w3
tc1Þ; 0;wtc1Þ;

where wtc1 is the smallest positive solution to the equation

ð1þ l2l4Þw4 � wþ l2 ¼ 0: (12)

For the greatest value of r for which the T-equilibrium is in

M it coincides with either the L-equilibrium once again or

with the H-equilibrium. In either case it occurs at rtc3 ¼ wtc3

ð1þ l3utc3Þ in the point

ðutc3; vtc3;wtc3Þ ¼ ðwtc3ð1� w3
tc3Þ; 0;wtc3Þ;

where wtc3 is the greatest solution to Eq. (12). So the

T-equilibrium is insideM for

rtc1 � r � rtc3; l2 � l2;0:

We will now determine a condition for whether the

T-equilibrium coincides with the L-equilibrium or the

H-equilibrium as it leaves M at r ¼ rtc3. As we will see,

the L-equilibrium changes stability each time it coincides

with the T-equilibrium. If the T-equilibrium coincides with

the L-equilibrium as it leaves M the L-equilibrium becomes

stable again, and we can have a back-transition to the L-mode

after the dithering phase. If l3 < 1=3 the H-equilibrium is

outside of M for all values of r, and the T-equilibrium will

coincide twice with the L-equilibrium. Therefore, assume

l3 � 1=3 such that wsn � 1. Then the T-equilibrium can be

made to coincide with the saddle-node bifurcation by requir-

ing that uT is equal to usn ¼ wsnð1� w3
snÞ when wT ¼ wsn.

This implies that l2 and l4 must satisfy the relation

l2 ¼
wsnð1� w3

snÞ
1þ l4w4

sn

� l2;c: (13)

Since the solution to PðwsnÞ ¼ 0 does not depend on the

value of l2 the three equilibrium points L, H, and T will for

l2 ¼ l2;c all coincide at the same value of r for which the

saddle-node bifurcation was found to occur. For l2 > l2;c

the T-equilibrium coincides with the L-equilibrium in a tran-

scritical bifurcation as the T-equilibrium leaves M, and if

l2 < l2;c the T-equilibrium instead coincides with the H-

equilibrium as it leavesM.

C. Stability of equilibria

In order to determine the stability of the four equilib-

rium points we linearize the system (2) around each equilib-

rium point. It will be used that the Jacobian matrix of the

system (2) in a general point ðu; v;wÞ is

DFðu; v;wÞ ¼
fu fv fw

gu gv gw

hu hv hw

0
@

1
A ¼

w� 2u� w4 � v �u uð1� 4w3Þ
l1v

1þ l4w4
l1

u

1þ l4w4
� l2

� �
� 4l1l4uvw3

ð1þ l4w4Þ2
�l3l5w 0 �l5ð1þ l3uÞ

0
BBB@

1
CCCA: (14)

1. Stability of the QH-equilibrium

The Jacobian matrix (14) evaluated in the QH-

equilibrium (3) is given by

DFð0; 0; rÞ ¼
rð1� r3Þ 0 0

0 �l1l2 0

�l3l5r 0 �l5

0
@

1
A:

The eigenvalues are

k1 ¼ rð1� r3Þ; k2 ¼ �l1l2; k3 ¼ �l5:

The eigenvalues k2 and k3 are always negative while the

sign of k1 depends on the value of r. We have

k1 > 0 for 0 < r < 1

k1 < 0 for r > 1:

(

So the QH-equilibrium is a saddle and thus unstable for

r < 1, and it is a stable node for r > 1. The QH-equilibrium

coincides with the H-equilibrium in a transcritical bifurca-

tion at rtc2 ¼ 1.

2. Stability of the L-equilibrium

Now consider the L-equilibrium. Define new coordi-

nates ðdu; dv; dwÞ centered at the L-equilibrium

u ¼ uL þ du; v ¼ 0þ dv; w ¼ wL þ dw:
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The system (2) linearized around the L-equilibrium then

becomes

_du ¼ �uLdu� uLdvþ uLð1� 4w3
LÞdw; (15a)

_dv ¼ l1

uL

1þ l4w4
L

� l2

� �
dv; (15b)

_dw ¼ �l3l5wLdu� l5ð1þ l3uLÞdw: (15c)

The eigenvalues of the Jacobian matrix of the system (15)

must be determined numerically. However, the stability of

the L-equilibrium can still be determined analytically. The

evolution of dv depends only on dv itself, so we can treat this

direction independently of the other two directions. We see

that

_dv < 0 for uL < l2ð1þ l4w4
LÞ

_dv > 0 for uL > l2ð1þ l4w4
LÞ:

(

So _dv < 0 when the equilibrium point is located below the

curve u ¼ l2ð1þ l4w4Þ belonging to N v and _dv > 0 when

the equilibrium point is located above this curve (see Fig. 2).

So the L-equilibrium changes stability in the direction trans-

verse to the plane v¼ 0 each time it coincides with the

T-equilibrium.

If l2 > l2;0 the T-equilibrium does not exist, and the

L-equilibrium is always located below the curve u ¼ l2

ð1þ l4w4Þ, making it attracting in the direction transverse to

the plane v¼ 0. If l2 lies in the interval l2;c < l2 < l2;0 the

L-equilibrium coincides with the T-equilibrium twice

with the L-equilibrium changing its transverse stability each

time. If l2 < l2;c the T-equilibrium coincides with the

L-equilibrium only once, by which the L-equilibrium

becomes repelling in the direction transverse to the plane

v¼ 0.

We now assume dv ¼ 0 in Eq. (15) and consider the

remaining two-dimensional system

_du
_dw

� �
¼
� �uL uLð1� 4w3

LÞ
�l3l5wL �l5ð1þ l3uLÞ

� du
dw

� �
: (16)

Define s to be the trace and d to be the determinant of the

system matrix of the reduced linearized system (16)

s ¼ �ðð1þ l3l5ÞuL þ l5Þ;

d ¼ l5uLðl3wLð2� 5w3
LÞ þ 1Þ:

Since s < 0 one of the eigenvalues is always negative. The

other eigenvalue is negative if and only if d > 0, that is

l3wLð2� 5w3
LÞ þ 1 > 0, which becomes the condition for

the L-equilibrium being stable in the plane v¼ 0. By com-

paring with Eq. (6) this condition can be written as

P0ðwLÞ > 0. Then from Eq. (7) we conclude that inside M
the L-equilibrium is always stable in the plane v¼ 0. So the

L-equilibrium is a stable node when it is attracting in the

direction transverse to the plane v¼ 0, and it is a saddle and

thus unstable when it is repelling in the transverse direction.

3. Stability of the H-equilibrium

We now consider the H-equilibrium. Define new coordi-

nates ðdu; dv; dwÞ centered at the H-equilibrium

u ¼ uH þ du; v ¼ 0þ dv; w ¼ wH þ dw:

The system (2) linearized around the H-equilibrium then

becomes

_du ¼ �uHdu� uHdvþ uHð1� 4w3
HÞdw; (17a)

_dv ¼ l1

uH

1þ l4w4
H

� l2

� �
dv; (17b)

_dw ¼ �l3l5wHdu� l5ð1þ l3uHÞdw: (17c)

As for the L-equilibrium, the evolution of dv only depends

on dv itself, so we can treat this direction independently of

the other two directions. We see that

_dv < 0 for uH < l2ð1þ l4w4
HÞ

_dv > 0 for uH > l2ð1þ l4w4
HÞ:

(

So _dv < 0 when the H-equilibrium is located below the

curve u ¼ l2ð1þ l4w4Þ belonging to N v and _dv > 0 when

the H-equilibrium is located above this v-nullcline (see

Fig. 2). This means the H-equilibrium changes stability in

the direction transverse to the plane v¼ 0 when it coincides

with the T-equilibrium. If l2 � l2;c the H-equilibrium never

coincides with the T-equilibrium, and it is therefore repelling

in the direction transverse to the plane v¼ 0 for all values of

r. When l2 < l2;c the H-equilibrium coincides with the

T-equilibrium once, by which it becomes attracting in the

direction transverse to the plane v¼ 0.

We now assume dv ¼ 0 in Eq. (17) and consider the

remaining two-dimensional system

_du
_dw

� �
¼
� �uH uHð1� 4w3

HÞ
�l3l5wH �l5ð1þ l3uHÞ

� du
dw

� �
: (18)

Let s be the trace and d the determinant of the system matrix

of the reduced linearized system (18)

s ¼ �ðð1þ l3l5ÞuH þ l5Þ;
d ¼ l5uHðl3wHð2� 5w3

HÞ þ 1Þ:

Since s < 0 one of the eigenvalues is always negative. The

other eigenvalue is negative if and only if d > 0, that is,

l3wHð2� 5w3
HÞ þ 1 > 0. This is the condition for the

H-equilibrium being stable in the plane v¼ 0. By comparing

with Eq. (6) we see this condition can be written as

P0ðwHÞ > 0. From Eq. (7) we see that inside M the

H-equilibrium always has one positive eigenvalue in the plane

v¼ 0, making it a saddle point. This means the H-equilibrium

is always unstable.

4. Stability of the T-equilibrium

The Jacobian matrix (14) evaluated in the T-equilibrium

(10) is given by

102302-6 Dam et al. Phys. Plasmas 20, 102302 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.38.67.112 On: Thu, 12 Dec 2013 21:45:54



DFðuT; vT;wTÞ ¼

�uT �uT �uTð4w3
T � 1Þ

l1l2vT

uT

0 � 4l1l
2
2l4vTw3

T

uT

�l3l5wT 0 �l5r
wT

0
BBBBB@

1
CCCCCA:

(19)

Define s to be the trace, d to be the determinant and f to be

the sum of the principal minors of the Jacobian matrix (19)

s ¼ � uT þ
l5r
wT

� �
;

f ¼ l5ruT

wT

� l3l5uTwTð4w3
T � 1Þ þ l1l2vT;

d ¼ �l1l2l5vT

r
wT

þ 4l2l3l4w4
T

� �
:

We notice that s < 0 and d � 0 with d ¼ 0() vT ¼ 0,

while f can be both negative, zero, or positive. The charac-

teristic polynomial written in terms of s; d, and f is given by

pðkÞ ¼ k3 � sk2 þ fk� d:

A third-order polynomial with real coefficients always has at

least one real root while the other two can either both be real

or they can be complex conjugates. The roots can be found

by numerically solving pðkÞ ¼ 0 for k. pð0Þ ¼ �d, so k ¼ 0

is an eigenvalue for the T-equilibrium if and only if vT ¼ 0.

For this single vanishing eigenvalue a transcritical bifurca-

tion occurs. Now assume that k1 ¼ 0 such that vT ¼ 0. It can

be shown14 the condition for having a second vanishing

eigenvalue is P0ðwTÞ ¼ 0. Since P0ðwÞ ¼ 0 also is the condi-

tion for the saddle-node bifurcation of the L and H equilib-

rium, there can only be two vanishing eigenvalues when

these three equilibria coincide. This occurs when l2 and l4

satisfy Eq. (13) and r ¼ rsn.

A pure imaginary eigenvalue is also possible. For a real

number x we find that pðixÞ ¼ 0 if and only if

x2 ¼ d=s ¼ f. This can be fulfilled, so an Andronov-Hopf

bifurcation occurs when

sf� d ¼ 0: (20)

To check when the T-equilibrium is stable, we use the

Routh-Hurwitz criterion. Assume vT > 0. Then s < 0 and

d < 0 is fulfilled for all parameter values while f can be both

positive, zero, or negative. Since sf� d < 0) f > 0 and

f < 0) sf� d > 0 the T-equilibrium is always stable

for sf� d < 0 and unstable for sf� d > 0. So the

T-equilibrium only changes stability as the Andronov-Hopf

bifurcation occurs.

IV. THREE TYPES OF TRANSITIONS

After analyzing the system (2) we are now able to show

that each of the three types of transitions,13 i.e., an oscillating

transition, a sharp transition with hysteresis, and a smooth

transition without hysteresis, can be achieved by an appropri-

ate choice of parameter values.

In Fig. 4 we consider a bifurcation diagram for each of

these three types of transitions. In the bifurcation diagrams

all three coordinates ðu; v;wÞ of all equilibrium points are

shown as functions of r. Coordinates of stable equilibria are

shown as solid curves, and unstable equilibria are shown as

dashed curves. Each of the three coordinates has its own

color, but there are no indicated distinctions between the L-,

H-, T-, or QH-equilibrium. The expressions for the positions

of the QH-equilibrium (3), L-equilibrium (4), H-equilibrium

(9), and T-equilibrium (10) can be compared with the bifur-

cation diagram to identify which set of curves that corre-

spond to each equilibrium point. The QH-equilibrium has its

u- and v-coordinates equal to zero for all values of r. This

means there is neither zonal flow or turbulence in this mode.

The L-equilibrium and the H-equilibrium has their v-coordi-

nate equal to zero for all values of r, meaning there is no

zonal flow in these modes. Because there are so many equi-

librium point coordinates equal to zero, it is not possible to

see these or their stability in the bifurcation diagrams,

because the curves are plotted on top of each other.

According to Ref. 13 any candidate for an L-H transition

should contain a special codimension-three bifurcation,

which is the collision of a cusp bifurcation and a Takens-

Bogdanov bifurcation, to ensure that it can reproduce all the

three types of transitions. We did not find such a

codimension-three bifurcation. Instead the three types of

FIG. 4. Bifurcation diagrams showing the three distinct types of transitions: (a) an oscillating transition where l2 ¼ 0:08; l3 ¼ 2:8; (b) a sharp transition

allowing hysteresis where l2 ¼ 0:4; l3 ¼ 2:8; (c) a smooth transition where l2 ¼ 0:4; l3 ¼ 1=3. Stable equilibria are marked with solid lines and unstable

equilibria with dashed lines. For all three diagrams l1 ¼ 18; l4 ¼ 1:8, and l5 ¼ 8.
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transitions originate from an Andronov-Hopf bifurcation and

the unfolding of a pitchfork bifurcation.

A. The oscillating transition

There are two conditions on the parameters for obtaining

an oscillating transition:

(a) Ensuring that the T-equilibrium enters and leavesM at

some point requires l2 � l2;0.

(b) Ensuring a L! T!QH transition instead of a L!
T! L!QH transition requires l2 � l2;c and l3 � 1=3.

The second condition may not be very important since

the back-transition to the L-mode in simulations only lasts

for a very short period of time. Fig. 4(a) shows a bifurcation

diagram where these two conditions are fulfilled. There are a

total of five different bifurcations that occur when r is varied

in the interval ½0; 2�. The T-equilibrium coincides with the

L-equilibrium in a transcritical bifurcation at rtc1 marked

with TC1 on the diagram, the Andronov-Hopf bifurcation of

the T-equilibrium occurs at rAH marked with AH, the H-

equilibrium coincides with the QH-equilibrium in a transcrit-

ical bifurcation at rtc2 marked with TC2, the T-equilibrium

coincides with the H-equilibrium in a transcritical bifurca-

tion at rtc3 marked with TC3, and the L- and H-equilibrium

merge and disappear in a saddle-node bifurcation at rsn

marked with SN on the diagram.

Depending on the parameters li; i ¼ 1;…; 5 we can ei-

ther have rAH � 1, which is the situation in Fig. 4(a), or we

can have rAH > 1. If rAH > 1 there exists an interval of bist-

ability of the T- and the QH-equilibrium. This allows hyster-

esis for the T-QH transition, as discussed in Ref. 8. The

interval of bistability is relatively small, so it exists only in a

short time interval when r is swept. This means the T-QH

hysteresis is unimportant. When the T-QH bistability is pres-

ent the basins of attraction of the T- and the QH-equilibrium

is separated by the 2-dimensional stable manifold of the

H-equilibrium. Based on numerical investigations Ref. 8

suggests that the hysteresis is sensitive to initial conditions.

To clarify, only solutions with initial conditions on the stable

manifold of the H-equilibrium exhibit sensitive dependence

on initial conditions in the sense that an arbitrarily small per-

turbation may move the state to any side of the separating

manifold. Initial conditions away from this manifold do not

have this property.

Fig. 5(a) shows the corresponding numerical solution of

the system (2). By comparing the solution in Fig. 5(a) with

the corresponding bifurcation diagram in Fig. 4(a) it can be

seen that the solution first follows the L-equilibrium, and

then it spirals towards the stable T-equilibrium and away

from it again some time after it has become unstable at the

Andronov-Hopf bifurcation. Then it moves to the QH-

equilibrium.

B. The sharp transition

There are two conditions on the parameters for obtaining

a sharp transition with hysteresis:

(a) Ensuring that the T-equilibrium never enters the phase

spaceM requires l2 > l2;0.

(b) Ensuring that the saddle-node bifurcation occurs inside

the phase spaceM requires l3 > 1=3.

Fig. 4(b) shows a bifurcation diagram with these conditions

fulfilled. The number of bifurcations are now limited to two; the

transcritical bifurcation that occurs as the H-equilibrium coin-

cides with the QH-equilibrium marked with TC2, and the

saddle-node bifurcation of the L- and H-equilibrium marked

with SN on the diagram. Fig. 5(b) shows a corresponding nu-

merical solution to the system (2). Since the T-equilibrium was

the only equilibrium not located in the plane v¼ 0 all dynamics

now occurs in the plane v¼ 0. So the transition occurs without

generation of zonal flow. The transition from the L-mode to the

QH-mode is sharp and occurs just after the saddle-node bifurca-

tion. In the bifurcation diagram it can be seen that the system

exhibits hysteresis for this set of parameters. If r was lowered

again, the solution could stay in the QH-mode until the transcrit-

ical bifurcation at rtc2 ¼ 1, where it would sharply jump to the

L-mode.

C. The smooth transition

There are two conditions on the parameters for obtaining

a smooth transition:

(a) Ensuring that the T-equilibrium never enters the phase

spaceM requires l2 > l2;0.

FIG. 5. Numerical solutions of the system (2) with the initial condition uð0Þ ¼ vð0Þ ¼ wð0Þ ¼ 0:01 and rðsÞ ¼ 0:01s showing the three distinct types of transitions:

(a) an oscillating transition where l2 ¼ 0:08; l3 ¼ 2:8; (b) a sharp transition where l2 ¼ 0:4; l3 ¼ 2:8; (c) a smooth transition where l2 ¼ 0:4; l3 ¼ 1=3. For all

three plots l1 ¼ 18; l4 ¼ 1:8, and l5 ¼ 8.
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(b) Ensuring that the saddle-node bifurcation occurs out-

side the phase spaceM requires l3 � 1=3.

Fig. 4(c) shows a bifurcation diagram with these condi-

tions fulfilled. Here, l3 ¼ 1=3 such that the saddle-node

bifurcation coincides with the QH-equilibrium creating a

pitchfork bifurcation at rpf ¼ 1 marked with PF. The

H-equilibrium has negative u-coordinate, so only the L- and

QH-equilibrium is seen in the diagram. Before the bifurca-

tion the QH-equilibrium is unstable and the L- and

H-equilibrium are stable, while after the bifurcation the

QH-equilibrium is stable, so the pitchfork bifurcation is

supercritical. Fig. 5(c) shows a corresponding numerical so-

lution to the system (2). It is seen that the transition from the

L-mode to the QH-mode is completely smooth and occurs

without zonal flow generation.

V. DIMENSION REDUCTION OF THE L-H TRANSITION
MODEL

For systems with slow and fast time scales it is possible

to separate the fast and slow dynamics and construct a

reduced model for the slow dynamics after the fast transients

have died out. We will show that the L-H transition model

(2) is of slow-fast type and that the system can be reduced to

be a 2-ODE system in the slow variables which captures the

essential dynamics of the system.

A. Geometric singular perturbation theory of slow-fast
systems

Here we briefly review geometric singular perturbation

theory15,16 which forms the basis of the dimension reduction.

Consider the mþ n-dimensional system

e _x ¼ e
dx

ds
¼ f ðx; y; eÞ; x 2 Rm;

_y ¼ dy

ds
¼ gðx; y; eÞ; y 2 Rn; (21)

where 0 < e� 1 is a small parameter which represent the

ratio between slow and the fast time scales. The variables x
are fast and the variables y are slow. In the limit e ¼ 0 we

have the reduced system

0 ¼ f ðx; y; 0Þ; x 2 Rm; (22a)

_y ¼ gðx; y; 0Þ; y 2 Rn; (22b)

where the first equation defines the n-dimensional critical
manifold

M0 ¼ fðx; yÞ 2 Rn �Rm j f ðx; y; 0Þ ¼ 0g:

For the system (22) the dynamics is constrained to evolve on

this manifold, governed by the differential equation (22b).

Geometric singular perturbation theory provides the mathemati-

cal foundation for allowing such a reduction also for e > 0.

Specifically, close to points ðx; yÞ on the critical manifold where

the Jacobian matrix Dxf ðx; y; 0Þ has eigenvalues with negative

real parts, there is an attracting invariant manifoldMe, the slow

manifold, for the system (21), as long as e is sufficiently small.

Furthermore, an asymptotic expansion of the slow manifold

Me ¼M0 þ eM1 þ e2M2 þ 	 	 	 (23)

can be obtained from Eq. (21).

B. The critical manifold

If we define e ¼ 1=l5 the system (2) can be recast in the

form (21)

_u

_v

 !
¼

f ðu; v;wÞ
gðu; v;wÞ

 !
¼

uðw� u� v� w4Þ

l1v
u

1þ l4w4
� l2

� �
0
B@

1
CA

e _w ¼ hðu; v;wÞ ¼ r� wð1þ l3uÞ: (24)

The reduced system is

_u

_v

 !
¼

f ðu; v;wÞ

gðu; v;wÞ

 !

0 ¼ hðu; v;wÞ: (25)

The critical manifoldM0 is defined by hðu; v;wÞ ¼ 0 which

can be explicitly solved for w

w ¼ u0ðu; vÞ ¼
r

1þ l3u
: (26)

The Jacobian matrix is simply

dh

dw
¼ �ð1þ l3uÞ:

Since dh=dw < 0 everywhere, geometrical singular perturba-

tion theory yields an invariant attracting manifold Me close

to the critical manifoldM0 as long as e is sufficiently small.

To lowest order in e the dynamics on the slow manifold is

captured by the reduced system

FIG. 6. The critical manifoldM0 and a numerical solution of the system (2)

with the initial condition uð0Þ ¼ vð0Þ ¼ wð0Þ ¼ 0:06 and the parameter val-

ues l1 ¼ 18; l2 ¼ 0:08; l3 ¼ 2:8; l4 ¼ 1:8; e ¼ 0:125, and r ¼ 0:8.
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_u ¼ f ðu; v;u0ðu; vÞÞ; (27a)

_v ¼ gðu; v;u0ðu; vÞÞ; (27b)

w ¼ u0ðu; vÞ: (27c)

Fig. 6 shows a plot of the critical manifold M0 and the tra-

jectory of a numerical solution. As a measure of the relative

deviation between a solution and the critical manifold M0

define d(s) to be the relative deviation between the w-coordi-

nate of a solution ðuðsÞ; vðsÞ;wðsÞÞ and the corresponding w-

coordinate on the critical manifold u0ðuðsÞ; vðsÞÞ

dðsÞ ¼ wðsÞ � u0ðuðsÞ; vðsÞÞ
wðsÞ :

Fig. 7 shows the evolution of the relative deviation d(s)

between the solution and the critical manifoldM0 in Fig. 6.

We see that a very small deviation is obtained.

For a time-dependent r numerical solutions was com-

puted at fixed values of e in the interval e ¼ 1=l5 2 ½0; 1�.
The initial power input rð0Þ was chosen to be positive to

eliminate the large relative deviation that arises when w is

very small. The maximal relative deviation, maxs2½0;150�jdðsÞj,
was computed for each fixed value of e. Fig. 8 shows the max-

imal relative deviation as a function of e. For e ¼ 0 the

solution stays on the critical manifold for all time, and the

value of maxsjdðsÞj increases with e. However, the deviation

is still small for quite large e, indicating that the identification

of 1=l5 as a small parameter is very robust.

A better approximation of the critical manifold can be

obtained by including the first-order term in the expansion

(23). This typically improves the deviation d by a factor 10,

yielding a significantly better quantitative approximation of

the original system.14 However, the qualitative dynamics

changes very little, and for the present purpose the added

complexity of the improved approximation does not seem

worthwhile.

C. The reduced L-H transition model

The analysis above establishes that the dynamics of the sys-

tem (2) is essentially 2-dimensional. By restricting the system

(2) to the dynamics on the critical manifoldM0, we obtain the

reduced L-H transition model (27), which also can be written as

_u
_v

� �
¼

uðw� u� w4 � vÞ
l1v

u

1þ l4w4
� l2

� �0
B@

1
CA; (28a)

w ¼ r
1þ l3u

: (28b)

The reduced system (28) has one less parameter than the full

system (2) because the parameter l5 has been eliminated by

taking the limit l5 !1. The phase space of the system (28)

isM¼ R2
þ. It can be shown that numerical solutions of the

reduced system look nearly identical to corresponding solu-

tions of the full system. From a full analysis14 of the reduced

system (28) it was found that all equilibrium points are the

same as in the full system. The Andronov-Hopf bifurcation

point has moved its position a little for the reduced system

compared to the full system while all other bifurcation points

are unchanged. Therefore, the bifurcation diagrams also look

very similar and the same three types of transitions can be

obtained.

VI. CONCLUSION

A full bifurcation analysis of the 3-ODE L-H transition

model formulated in Ref. 7 has been carried out. The model

was found to contain each of the three different types of tran-

sitions; i.e., the oscillating, the sharp, and the smooth transi-

tion. The precise conditions on the parameters for obtaining

each transition type were determined. The sharp transition

with hysteresis and the smooth transition originated from the

unfolding of a pitchfork bifurcation, while the oscillating

transition resulted from an Andronov-Hopf bifurcation. Both

the sharp and the smooth transition occurred without genera-

tion of zonal flow.

By using geometric singular perturbation theory the

system was recognized as having slow-fast dynamics, and

the system quickly converged to the dynamics of the slow

subsystem. The reduced 2-ODE system resulting from the

restriction of the 3-ODE system to the dynamics on the criti-

cal manifold was determined to qualitatively contain all the

FIG. 7. The relative deviation between the critical manifoldM0 and the so-

lution shown in Fig. 6.

FIG. 8. Maximal relative deviation as a function of e for the parameter values

l1 ¼ 18; l2 ¼ 0:08; l3 ¼ 2:8; l4 ¼ 1:8, and r ¼ 0:1þ 0:01s; s 2 ½0; 150�
and the initial condition ðuð0Þ; vð0Þ;wð0ÞÞ ¼ ð0:01; 0:01;u0ð0:01; 0:01ÞÞ.
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same dynamics as the full system. This means that all the

dynamics in the system is essentially 2-dimensional, show-

ing that a 2-ODE system is sufficient for obtaining a minimal

model of the L-H transition. This suggests that the pressure

gradient N is practically slaved to a combination of the drift

wave turbulence level E and the input power Q.
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