1,121 research outputs found

    Intra-ventricular blood flow simulation with patient specific geometry

    Get PDF

    One-Dimensional Nanostructures and Devices of II–V Group Semiconductors

    Get PDF
    The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities

    Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties

    Get PDF
    We reported the optical and wettability properties of aligned zinc oxide micro/nanotube arrays, which were synthesized on zinc foil via a simple hydrothermal method. As-synthesized ZnO micro/nanotubes have uniform growth directions along the [0001] orientations with diameters in the range of 100–700 nm. These micro/nanotubes showed a strong emission peak at 387 nm and two weak emission peaks at 422 and 485 nm, respectively, and have the hydrophobic properties with a contact angle of 121°. Single ZnO micro/nanotube-based field-effect transistor was also fabricated, which shows typical n-type semiconducting behavior

    STUDY ON TOTAL LUMINESCENCE SPECTRA - APPLICATION OF THE MONTE-CARLO METHOD TO 3-DIMENSIONAL SYNCHRONOUS FLUORESCENCE SPECTROMETRY

    Get PDF
    Three-dimensional synchronous fluorescence spectrometry (TDSFS, a combination of synchronous fluorescence spectrometry and three-dimensional fluorescence spectrometry) is a new method which has been developed recently. The method has usually been used as an efficient tool to select the best Delta lambda value for synchronous fluorescence spectra. This paper studies the sensitivity of the method, which was not been done in the past. The total fluorescence intensity has been used instead of the conventional single point intensity, calculated by the Monte-Carlo method, as the experimental parameter to determine fluorescein and tryptophan. The sensitivity of the total fluorescence method is nearly one hundred times better than that of the single point method. The new method has been used to simultaneously determine naphthalene, pyrene and perylene successfully. The mechanism of the method has also been studied

    In situ edge engineering in two-dimensional transition metal dichalcogenides

    Get PDF
    Exerting synthetic control over the edge structure and chemistry of two-dimensional (2D) materials is of critical importance to direct the magnetic, optical, electrical, and catalytic properties for specific applications. Here, we directly image the edge evolution of pores in Mo1-xWxSe2 monolayers via atomic-resolution in situ scanning transmission electron microscopy (STEM) and demonstrate that these edges can be structurally transformed to theoretically predicted metastable atomic configurations by thermal and chemical driving forces. Density functional theory calculations and ab initio molecular dynamics simulations explain the observed thermally induced structural evolution and exceptional stability of the four most commonly observed edges based on changing chemical potential during thermal annealing. The coupling of modeling and in situ STEM imaging in changing chemical environments demonstrated here provides a pathway for the predictive and controlled atomic scale manipulation of matter for the directed synthesis of edge configurations in Mo-1_xWxSe2 to achieve desired functionality

    Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP

    Get PDF
    The Asian monsoon (AM) played an important role in the dynastic history of China, yet it remains unknown whether AM-mediated shifts in Chinese societies affect earth surface processes to the point of exceeding natural variability. Here, we present a dust storm intensity record dating back to the first unified dynasty of China (the Qin Dynasty, 221–207 B.C.E.). Marked increases in dust storm activity coincided with unified dynasties with large populations during strong AM periods. By contrast, reduced dust storm activity corresponded to decreased population sizes and periods of civil unrest, which was co-eval with a weakened AM. The strengthened AM may have facilitated the development of Chinese civilizations, destabilizing the topsoil and thereby increasing the dust storm frequency. Beginning at least 2000 years ago, human activities might have started to overtake natural climatic variability as the dominant controls of dust storm activity in eastern China
    corecore