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Abstract In the present study, an alumina nanoparticle

adsorbent is developed using solution combustion synthesis

method and is further utilized for the removal of zinc

(Zn(II)) and color black G (CBG) from wastewater. The

developed adsorbent is characterized using SEM–EDS

technique. The effect of various parameters such as the

initial concentration, the contact time, the mass of adsor-

bent and the solution pH are studied for the removal of

Zn(II) and CBG. The equilibrium time for both, Zn(II) and

CBG is obtained to be approximately 4.5 h. The maximum

adsorption of Zn(II) is found at pH value of 7 while the

maximum removal of CBG is obtained at pH value of 2.

The Langmuir isotherm model is found suitable for

explaining the adsorption behavior of Zn(II) (R2 = 0.976)

and CBG (R2 = 0.974) onto alumina nanoparticles, which

supports the monolayer formation of Zn(II) and CBG

during the adsorption process. The maximum adsorbent

capacity of alumina nanoparticles for the removal of Zn(II)

and CBG are obtained as 1,047.83 and 263.16 mg g-1,

respectively. The kinetic data obtained during the experi-

ments are better fitted with the pseudo-first-order model for

both, Zn(II) (R2 = 0.989) and CBG (R2 = 0.971). A sta-

tistical analysis is also carried out to develop the mathe-

matical equation which relates the different independent

parameters (initial metal concentration, pH, time and mass

of adsorbent) with the dependent parameter (adsorption

capacity). The optimum values of independent parameters

are estimated using Microsoft Solver.
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Introduction

In the last few decades, with an increase in the urbanization

and industrialization, there is an increase in the use of

heavy metals and dyes in the industries. Industries such as

electroplating, galvanizing, pigments, mine drainage, etc.

are using metals in their processing. Other industries such

as textile, ink, paper and pulp, leather, etc. are using sig-

nificant amount of dyes in their processing. These indus-

tries are releasing a huge quantity of effluent which is

contaminated with different types of metals and dyes and is

responsible for polluting our water bodies [1, 2].

Textile industries are the key industries which are dis-

charging both, metals and dyes to the environment through

their effluent. The metals such as Zn(II), Cr(VI), Cu(II),

etc. and dyes such as Color Black G, Congo Red, Malachite

Green, etc. are the ones which are very much toxic and are

primarily present in the effluents of the textile effluents [1,

3–9]. Hence, an emphasis is required for handling the

effluents from textile industries.

The textile industry effluent, contaminated with metals

and dyes, is required to be treated before it is released into

the water bodies. There are various methods available for

the removal of metals and dyes, such as adsorption [10,

11], photo-degradation [12–14], ion exchange [15], oxi-

dation [16], etc. Among these available methods, adsorp-

tion is proven to be an economical and efficient method

which may be feasible for industrial scale operation [17].

The adsorbents required to adsorb metal and dyes from
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these industry effluents are required to have properties such

as higher surface area, high thermal stability and small pore

diameters.

There is a considerable change observed in the chem-

ical, physical, mechanical and optical properties of the

adsorbents when the particle size is scaled down to a nano

level. The principal change is observed on the surface area

of the nanomaterial which increases tremendously and

leads to the higher adsorption capacity for the heavy

metals and dyes removal [10]. The change in the structure

of the pore is also an important attribute. This will cor-

respond to the faster transportation of the metal ions or

dyes to the internal active sites of adsorbents. These

changes in the properties of nanoadsorbent make them

suitable and efficient for the treatment of textile industry

effluents. Hence, there is a dire need to develop the

nanoadsorbent for the removal of multiple pollutants from

the effluent streams of textile industries. Recently, various

nanomaterials such as Single-Walled Carbon Nanotubes

(SWCNTs), Multi-Walled Carbon Nanotubes (MWCNT),

Polymer Nanocomposites, Nano-sized c-Fe2O3, Gold

nanoparticles, Iron & Titanium nanoparticles, Titanium

nanoparticles, Silver nanoparticles and alumina-based

nanoparticles, etc. have been developed and used as

adsorbents [10, 18].

There are a number of adsorbents reported in the liter-

ature which are used for the adsorption of multiple metal

ions from wastewater. Some of the examples are the

functioned Carbon Nanotubes (CNTs) and activated neem

bark for the adsorption of a toxic hexavalent chromium ion

[7, 19], carbon nanotube along with magnesium oxide form

composite for the removal of Pb(II) [20], fertilizer wastes

to adsorb multiple metal ions [21], alumina-coated carbon

nanotubes for the Pb(II) removal [22], nickel oxide for the

removal of Zn(II), Co(II) and Cd(II) [23], orange peel for

the cadmium removal [24], humic acid (HA) for Cu(II) and

Zn(II) from aqueous solution [25], zinc oxide nanoparticles

(ZnO) for the adsorption of Zn(II), Cd(II) and Hg(II) [26],

clay minerals in surficial sediment samples for the removal

of Cu(II) and Zn(II) [27].

Similarly, a number of adsorbents are reported in the

literature for the removal of dyes from the effluent of

industries. Azo dyes are the primary class of dyes, having a

number of industrial applications. Various adsorbents are

utilized for the removal of these azo dyes from the indus-

trial effluents, e.g. functionalized multi-walled carbon

nanotubes (f-MWCNTs) have been applied for the

adsorption and decolourization of three different azoic dyes

viz. Direct Congo Red, Reactive Green HE4BD and

Golden Yellow MR dyes [28], magnetic-modified multi-

walled carbon nanotubes have been employed for the

removal of Crystal Violet (CV), Thionine (Th), Janus

Green B (JG), and Methylene Blue (MB) dyes [29], two

bamboo-derived carbons BACX2 and BACX6 for the

removal of a large reactive dye and Reactive Black 5 [28].

Previous studies have also reported the use of different

waste materials for the removal of dyes [4, 30–33].

Most of the studies reported in the literature are limited

to the use of developed adsorbents for the adsorption of

either metals or dyes. Very few studies have been reported

for the use of any adsorbent for the removal of both dyes

and metals (Table 2). As the Zn(II) and CBG are the

major components of the effluent released from textile

industries, thus, there is a necessity to develop a suitable

adsorbent for the efficient removal of Zn(II) and CBG

from waste water.

In the present work, the solution combustion synthesis

method is utilized for the development of alumina nano-

particles. This developed adsorbent is used for the removal

of Zn(II) and CBG from wastewater. The effect of various

parameters such as the initial concentration, contact time,

adsorbent dosage and pH of the solution are studied for the

removal of Zn(II) and CBG. Various isotherm and kinetic

models are being applied using the equilibrium and kinetic

experimental data. A mathematical correlation is devel-

oped using obtained experimental results and utilized for

estimating the optimum values of different parameters

using Microsoft Solver.

Materials and methods

Synthesis of nanoadsorbent

There are a number of methods available for the synthesis

of the nanomaterials. Combustion Synthesis (CS) or Self-

propagating High-temperature Synthesis (SHS) is one of

them, which is an energy saving and eco-friendly process

for the production of low-cost nanoadsorbents. On the basis

of the physical nature of their primary reaction medium,

the process can be further divided into three methods: (1)

condensed phase combustion where the reactants are in

solid state, (2) solution combustion synthesis where the

reaction medium is an aqueous solution and (3) gas phase

combustion [34].

Alumina-based nanoparticles using alumina as a base

are synthesized by the solution combustion synthesis.

Glycine and ammonium nitrate with nitrate as the basic raw

material are used for the process [35]. The oxidizer to fuel

ratio for the nanoaluminium production is maintained at

1:1. The solution combustion reaction is carried out in a

muffle furnace at temperatures \45 �C. Assuming the

complete combustion during the process, the theoretical

equation for the aluminium combustion synthesis can be

written as Eq. 1 [35].
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4Al(NO3Þ3 þ 10C2H5O2Nþ 15NH4NO3

! 2Al2O3 þ 20CO2 þ 55H2Oþ 26N2 ð1Þ

All the chemicals used for the synthesis and experi-

mental studies are of the analytical grade from Merck.

Characterization of adsorbent

The developed alumina nanoparticles adsorbent is charac-

terized using Scanning Electron Microscopy (SEM) and

Energy Dispersive X-ray Spectroscopy (EDS) (INCA). The

SEM image helps in analyzing the morphology and size of

the particles of the developed adsorbent. The EDS analysis

helps in identifying the elements present on the surface of

the nanoparticles.

Batch experiments

The stock solutions of 1,000 mg L-1 of Zn(II) and CBG

are prepared by dissolving stoichiometric amount of

ZnSO4�7H2O and CBG dye in distilled water. The solutions

are further diluted using distilled water to obtain the

required standard solutions from a range of 50–1,000 mg

L-1.

Batch experiments are performed by agitating the pre-

pared solution flasks for a predetermined period at room

temperature (35 ± 2 �C) on a rotary shaker. The effect of

contact time is studied at room temperature (35 ± 2 �C)

with an adsorbent dosage of 0.4 g L-1 for the initial con-

centration of Zn(II) and CBG as 500 and 100 mg L-1,

respectively. The equilibrium study is performed by vary-

ing initial concentrations from 100 to 900 and 50–500 mg

L-1 of Zn(II) and CBG, respectively, while maintaining the

constant adsorbent dosage and contact time at 0.4 g L-1

and 4.5 h, respectively, for each sample. The effect of

adsorbent dosage is studied by performing experiments at

room temperature by varying the mass of adsorbent from

0.4 to 2.0 g L-1 in a sample of 1,000 and 200 mg L-1 of

Zn(II) and CBG solutions, respectively. The effect of pH is

also studied by conducting experiments for a variation of

pH from 2 to 7 by keeping the initial concentration of the

solution at 400 and 100 mg L-1 of Zn(II) and CBG solu-

tion, respectively, and maintaining the adsorbent dosage of

0.4 g L-1. All the experiments are done twice to check the

repeatability of the process and the average values are used

for evaluating various parameters.

Analysis of Zn(II) and CBG

The concentration of dye left in the liquid solution is

determined using a UV–Visible spectrophotometer (Evo-

lution 201, Thermo Scientific) while the amount of the

Zn(II) is determined using the EDTA titration method [36].

The amount of Zn (II) or CBG adsorbed by the devel-

oped alumina nanoparticles are calculated using the fol-

lowing Eq. 2.

qe ¼
ðC0 � CeÞV

W
ð2Þ

where qe is the amount of Zn(II) or CBG adsorbed by the

adsorbent (mg g-1), C0 is the initial liquid phase concen-

tration of Zn(II) or CBG (mg L-1), Ce is the liquid phase

concentration of Zn(II) or CBG at equilibrium (mg L-1),

V is the initial volume of Zn(II) or CBG solution (ml) and

W is the weight of the adsorbent (g) [7].

Results and discussion

Characterization

The developed adsorbent is characterized using SEM and

EDS analysis. The SEM image for the developed adsorbent

is shown in Fig. 1a. The SEM image shows a clear surface

available for the adsorption. This image also indicates the

availability of nano-size pores and cracks on the surface of

adsorbent which may be one of the reasons for the sig-

nificant increase in the adsorption capacity of the devel-

oped adsorbent. The EDS analysis for the developed

adsorbent is shown in Fig. 1b. This analysis shows the

peaks of C, Al and O atoms and confirms the presence of

Al2O3 nanoparticles. The presence of C, Al and O are in

accordance with the Eq. 1 of the synthesis.

Effect of contact time

The effect of contact time on the removal of Zn(II) and

CBG are studied and presented in Fig. 2. Figure 2a and b

indicates that the percentage removal for Zn (II) and CBG

increases with an increase in contact time. It can also be

inferred that the rate of adsorption of Zn(II) and CBG is

decreasing with increase in the contact time. The change in

the percentage removal is only 1 and 0.9 % for Zn(II) and

CBG, respectively, beyond the 4 h of contact time which is

not significant. Therefore, the equilibrium time is consid-

ered to be approximately 4.5 h for Zn(II) and CBG and is

selected for the remaining batch experiments.

A similar trend of increase in the adsorption capacity is

also observed with an increase in contact time. With an

increase in the contact time, the time required for diffusion

of Zn(II) and CBG molecules to the internal adsorption

sites is sufficient. This leads to the utilization of more and

more adsorption sites with increase in time and results in

increase in the adsorption capacity and percentage removal

with time. The maximum percentage removal for Zn(II)

and CBG is obtained as 33.5 and 25.6 %, respectively.
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Effect of initial concentration

The effect of initial concentration on the removal of Zn(II)

and CBG is shown in Fig. 3. The initial concentrations

vary from 100 to 900 and 50–500 mg L-1 for Zn(II) and

CBG, respectively. It can be inferred from the Fig. 3a and b

that the percent removal is decreasing from 50 to 28.89 and

66.67–19.34 % with an increase in the initial concentration

from 100 to 900 and 50–500 mg L-1 for Zn(II) and CBG,

respectively. Also, it is found that the solid phase concen-

tration of the adsorbent is increased from 125 to 650 and

83.33–241.82 for Zn(II) and CBG, respectively, with increase

in initial concentration.

The decrease in the percentage removal with an increase

in inlet concentration is due to the unavailability of suffi-

cient number of active sites required for the adsorption

process. As the inlet concentration is increasing, more

amount of solute is available for adsorption in the fixed

number of active sites which results in the increase of the

adsorption capacity of the adsorbent.

Effect of adsorbent dosage

Figure 4 shows the effect of adsorbent dosage on the

removal of Zn(II) and CBG. The mass of the adsorbent is

varied from 0.4 to 2.2 mg L-1 keeping other parameters

such as contact time (4.5 h) and initial concentration (1,000

and 200 mg L-1 for Zn(II) and CBG, respectively) con-

stant. With an increase in the adsorbent dosage from 0.4 to

2.2 gm L-1, the percent removal of Zn(II) and CBG

increased from 53.33 to 71 and 42.86 to 64.88 %, respec-

tively. With an increase in the adsorbent dosage, there is a

decrease in the solid phase concentration of the adsorbent

from 1,333.33 to 322.73 and 107.14 to 29.49 mg g-1 for

the removal of Zn(II) and CBG, respectively.

Fig. 1 a SEM b EDS analysis of developed alumina nanoparticles adsorbent
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Fig. 2 Percent removal Vs time (hrs) for 0.4 g L-1 adsorbent for a 500 mg L-1 Zn(II) and b 100 mg L-1 CBG
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The increase in the percentage removal is due to the

availability of more number of active sites for the removal

of Zn(II) and CBG. As the amount of adsorbent is

increased while keeping the same amount of solute in

solution, adsorption capacity decreases due to the unuti-

lized adsorption sites.

Effect of pH

The effect of pH on the removal of Zn(II) and CBG is

studied and presented in Fig. 5. The pH of the solution is

varied from 2 to 7 while keeping inlet concentration,

contact time and adsorbent dosage as 1,000 for Zn(II) &

500 mg L-1 for CBG, 4.5 h and 0.4 g L-1, respectively,

during the experiment. It is found that the percent removal

of Zn(II) increases from 12 to 44.4 %, while the removal of

CBG decreases from 34.04 to 5.12 % with an increase in

the pH of the solution from 2 to 7.

With an increase in pH value of the solution, there is no

significant difference noted in the removal of CBG. This

suggests that the pH is not a regulating factor in the

removal of CBG. However, a considerable increase in the

percentage removal of Zn(II) has been noted with an

increase in pH from 2 to 7. This indicates that the

adsorption removal of Zn(II) is more favorable at higher

pH.

Theoretical studies

Isotherm study

In the present study, Langmuir and Freundlich isotherm

models are employed to explain the adsorption phenome-

non for the removal of Zn (II) and CBG using alumina

nanomolecules.
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Fig. 4 Effect of adsorbent dosage for the removal of a 1,000 mg L-1 Zn(II) and b 200 mg L-1 CBG
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Langmuir isotherm model

The Langmuir isotherm model is a widely used isotherm

model in the literature. The model assumes the formation

of monolayer during the removal of metal/dye from

aqueous solution using developed nanoaluminium adsor-

bent. The Langmuir isotherm study also provides the

maximum adsorption capacity of the adsorbent for the

removal of metal/dye [11, 37]. The linearized Langmuir

isotherm model is expressed as given in Eq. 3.

Ce

qe

¼ 1

qmb
þ Ce

qm

ð3Þ

where b is adsorption equilibrium constant (L mg-1)

related to the apparent energy of adsorption and qm is the

maximum quantity of adsorbate required to form a single

monolayer on unit mass of adsorbent (mg g-1).

The equilibrium experimental data are plotted between

Ce/qe and Ce as shown in Fig. 6 for the removal of Zn(II)

and CBG. The correlation coefficients and the model

parameters are evaluated and tabulated in Table 1.

Freundlich isotherm model

The Freundlich model suggests a heterogeneous adsorption

of the solute on the adsorbent surface [38]. The model is

expressed by the following Eq. 4.

qe ¼ KFC
1
n
e ð4Þ

where KF is representing the Freundlich constant, which is

indicating the relative adsorption capacity of the adsorbent

related to the bonding energy and n is the heterogeneity

factor representing the deviation from linearity of adsorp-

tion and is also known as Freundlich coefficient.

The Eq. 4 can be linearized and expressed as Eq. 5.

log qe ¼ log KF þ
1

n
log Ce ð5Þ

The experimental data are plotted between log qe and

log Ce and shown in Fig. 7 for the removal of Zn(II) and

CBG. The coefficients for Freundlich isotherm are evalu-

ated and tabulated in Table 1.
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Fig. 5 Effect of pH on the removal of a 1,000 mg L-1 Zn(II) and b 500 mg L-1 CBG
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Fig. 6 Langmuir isotherm plot for the removal of Zn(II) and CBG

Table 1 Isotherm parameters for the removal of Zn(II) and CBG

Langmuir isotherm parameters Freundlich isotherm

parameters

b qm

(mg g-1)

R2 KF n R2

Zn(II) 0.002875 1,047.83 0.976 9.86711 1.4836 0.971

CBG 0.01832 263.16 0.974 38.4902 3.245 0.953
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Final remarks on isotherm study

On studying and validating the experimental data with the

Langmuir and Freundlich isotherm models, it is found that

the removal of Zn (II) and CBG are well explained by the

Langmuir isotherm model. This suggests that the adsorp-

tion is primarily governed by the formation of the mono-

layer on the adsorption sites. The maximum adsorption

capacity (i.e. 1,047.83 and 263.16 mg g-1 for Zn(II) and

CBG removal, respectively) found by the Langmuir model

is much higher as compared for other adsorbents used for

the removal of heavy metals and dyes. The adsorption

capacity obtained for the removal of Zn(II) and CBG is

compared with other nanoadsorbents utilized for the

removal of metal or dyes and are tabulated in Table 2.

The evaluation of the equilibrium study is an essential

factor for the designing of the fixed-bed adsorption column.

This study helps in understanding the interaction of the

concentration of the solute on the solid and liquid phase,

which works as the driving force during the continuous

adsorption process. The equilibrium study also helps in

characterizing the shape of the breakthrough curve which is

a very important factor in the designing of the fixed-bed

adsorption column. Maximum fraction of bed length is

possibly utilized during the continuous operation as the

unused bed length is less for a favorable isotherm.

Kinetic study

In the present work, pseudo-first-order and second-order

kinetic models are employed to explain the kinetic

behavior of the operation.

Pseudo-first-order kinetic model

The pseudo-first-order kinetic model is represented by the

non-linear equation shown in Eq. 6 [43–45].

dqt

dt
¼ kad ðqe � qtÞ ð6Þ

where qe and qt are the Zn(II) and CBG concentration in

solid phase at equilibrium and at time t, respectively. kad is

the rate constant for the pseudo-first-order adsorption
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Fig. 7 Freundlich isotherm for the removal of Zn(II) and CBG

Table 2 Comparison of adsorption capacities for the removal of different metals and dyes

Adsorbents Metal Capacity (mg g-1) Dye Capacity (mg g-1) References

Alumina nanoparticles Zn(II) 1,047.83 CBG 263.16 Present study

Multi-walled CNT – – Direct congo red 148 [28]

Reactive green HE4BD 152

Golden yellow MR 141

Succinyl-grafted chitosan Zn(II) 290 Cationic Dye 431 [39]

Malachite NPs. – – Fluorescein (Flu) 32.46 [40]

Rhodamine B (RB) 23.47

Rhodamine 6G (R6G) 8.40

Iron oxide nanoparticles Pb(II) 167.36 – – [17]

Pectin–iron oxide magnetic

nanocomposite

Cu(II) 48.99 – – [41]

Magnetic-modified multi-walled

carbon nanotubes

– – Crystal violet (CV) 227.7 [29]

Janus green B (JG) 250.0

Thionine (Th) 36.4

Methylene blue (MB) 48.1

Brazilian pine-fruit shells

(Araucaria angustifolia)

– – Remazol black B (RB) 74.6 [42]

Magnetic nano adsorbent Cd(II) 35.71 – – [24]

Orange peel powder 50
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process. The integrated rate law after application of the

initial condition of qt = 0 at t = 0, is given by Eq. 7.

log ðqe � qtÞ ¼ log qe �
kad t

2:303
ð7Þ

A linear plot is drawn between log (qe-qt) and t for

Zn(II) and CBG experimental data and are shown in Fig. 8.

A linear fit to the plot is used to evaluate the value of the

rate constant kad and is tabulated in Table 3.

Second-order kinetic model

The second-order kinetic model is also utilized to explain

the kinetic behavior of the operation. The applicability of

the second-order kinetics is represented by the Eq. 8 [44,

45].

dqt

dt
¼ k2ðqe � qtÞ2 ð8Þ

where qe and qt are representing the Zn(II) and CBG ion

concentration in the solid adsorbent at equilibrium and at

time t, respectively. k2 is representing the second-order rate

constant in g mg-1 min-1 for the adsorption process. The

integrated rate law after application of the initial condition

of qt = 0 at t = 0, is given by Eq. 9.

1

ðqe � qtÞ
¼ 1

qe

þ k2t ð9Þ

The experimental kinetic data for Zn(II) and CBG are

plotted between 1/(qe-qt) and t and are shown in Fig. 9. The

second-order rate constants are evaluated and are tabulated

along with their coefficient of correlations in Table 3.

Final remarks on the kinetic study

The validation of the kinetic models using the experimental

results and the obtained values of the coefficients of

determination (R2) suggests the applicability of pseudo-

first-order kinetics for the adsorption of Zn(II) and CBG

onto the nanoalumina adsorbent. The evaluation of the

kinetic constants is important for the designing of the fixed-

bed adsorption column as it will also provide the idea about

the rate of adsorption. The various design parameters for

the fixed-bed adsorption column such as the breakthrough

time and the shape of the breakthrough curve are dependent

on the rate of adsorption. If the rate of adsorption is fast,

the shape of the breakthrough curve would be steep and the

fraction of utilized bed would be higher.

Statistical analysis

Formulation of model

The process could be effectively utilized if the optimal

conditions of the parameters would be used to perform the

experiments. To find the optimum parameters, a fourth

order polynomial equation is developed to correlate the

dependent parameter with the independent parameters and

is represented by Eq. 10.

qpre¼a0þ
X

ai1Xiþ
X

ai2X2
i þ

X
ai3X3

i þ
X

ai4X4
i

ð10Þ

All parameters used in the Eq. 10 are normalized by

considering the highest value of the parameter used in the

experiment as the basis. This equation is utilized to predict

the adsorption capacity (dependent parameter) using the

inlet concentration (Cin), pH, contact time and adsorbent

dosage as independent parameters.

The model is obtained by performing regression using

Microsoft Excel 2007. The qpre is representing the pre-

dicted value of the adsorption capacity, a0 is the constant,

ai1, ai2, ai3 and ai4 are the constants for the ith parameter

for 1st, 2nd, 3rd and 4th order, respectively.

The regression of the experimental values for the

removal of Zn(II) and CBG leads to a mathematical equa-

tions which are provided in Eqs. 11 and 12, respectively.
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Fig. 8 Pseudo-first-order kinetic model for the removal of Zn(II) and

CBG

Table 3 Kinetic parameters for the removal of Zn(II) and CBG

First order Second order

kad R2 k2 R2

Zn(II) 0.7285 0.989 0.00415 0.606

CBG 0.98789 0.97104 0.07792 0.80958
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qpre ¼ �2:1435� 2:0947 X1 þ 8:4548 X2 þ 4:5890 X3

� 1:4469 X4 þ 11:8719 X2
1 � 18:1875 X2

2

� 29:1849 X2
3 þ 13:9369 X2

4 � 19:3174 X3
1

þ 20:0193 X3
2 þ 53:3142 X3

3 � 31:0727X3
4

þ 10:1927 X4
1 � 8:3333 X4

2 � 32:0513 X4
3

þ 21:6557 X4
4 ð11Þ

qpre ¼ �2:0462þ 3:9734 X1 þ 16:5155 X2 � 10:3049 X3

þ 5:6137 X4 � 10:4286 X2
1 � 36:4521 X2

2

þ 23:0546 X2
3 � 21:5198 X2

4 þ 13:1761 X3
1

þ 34:2975 X3
2 � 22:4962 X3

3 þ 32:5672X3
4

� 5:7632 X4
1 � 11:7906 X4

2 þ 7:9803 X4
3

� 16:0248 X4
4 ð12Þ

The ANOVA analysis of the regression indicates that

the value of P for all the constants is [0.0001. Hence, all

the constants are equally important to evaluate the value of

adsorption capacity, for the removal of Zn(II) and CBG.

Validation of model

The developed models are validated using experimental

results. The graph is plotted for the actual and predicted

adsorption capacity and is shown in Fig. 10.

The Fig. 10 shows that the developed models are vali-

dated very well with the experimental results and the val-

ues of R2 is found to be 0.9696 and 0.9236 for the Zn(II)

and CBG models, respectively.

Optimization

The optimization of the developed model can be very much

helpful in estimating the optimum parameters which are

desirable to utilize the adsorbent, best of its capability.

There are several optimization techniques available such as

Differential evolution, Genetic algorithm, Microsoft Sol-

ver, etc. to estimate the optimum parameters. In the present

work, Microsoft Solver of Microsoft Office 2007 is utilized

for evaluating the optimal parameters. The optimization is

carried out using the boundary conditions stated in Table 4.

The optimum parameters obtained after the implemen-

tation of Microsoft Solver are being tabulated in Table 5.

Conclusions

Alumina nanoparticles adsorbent is synthesized using

solution combustion synthesis method and successfully
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Fig. 9 Second-order-kinetic model for the removal of Zn(II) and

CBG
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Fig. 10 Comparability of the values of adsorption capacity for the

actual versus the model predicted values

Table 4 Boundary conditions for the optimization of the model

Zn(II) CBG

Minimum Maximum Minimum Maximum

Inlet concentration 10 1,000 10 1,000

pH 1 11 1 11

Adsorbent dosage 0.1 2.2 0.1 2.2

Contact time 0.25 4 0.25 4

Table 5 Optimum parameters for obtaining the maximum adsorption

capacity

Zn(II) CBG

Inlet concentration (mg L-1) 1,000 1,000

pH 6.349 10.99

Adsorbent dosage (g L-1) 0.2363 2.20

Contact time (h) 4.5 4.5
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utilized for the removal of Zn(II) and CBG dye. The

equilibrium contact time for the adsorption of Zn(II) and

CBG is obtained as approximately 4.5 h. The maximum

percentage removal is found as 33.5 and 25.6 % by keep-

ing the initial concentration as 500 and 100 mg L-1 for

Zn(II) and CBG, respectively. The removal of Zn(II)

increases with an increase in the pH of the solvent, while

the removal of CBG decreases for the same. The Langmuir

isotherm model describes the phenomenon for the removal

of Zn(II) and CBG using the alumina nanoparticles. This

supports the formation of monolayer during the adsorption

process. The maximum adsorption capacity evaluated

from the Langmuir isotherm model is 1,047.83 and

263.16 mg g-1 for the removal of Zn(II) and CBG,

respectively. The maximum adsorption capacity obtained

for the removal of Zn(II) and CBG using alumina nano-

particles are much higher in comparison to the other

adsorbents used for the removal of metal and dyes in the

industries. The removal of Zn(II) and CBG are governed by

the pseudo-first-order kinetic model. Experimental data are

regressed to develop the mathematical models for Zn(II)

and CBG adsorption. The Microsoft Solver technique is

utilized to obtain the optimum values of initial concentra-

tion, pH, contact time and adsorbent dosage for maximum

adsorption capacity.
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