1,703 research outputs found

    Estimate of halo ellipticity as a function of radius with flexions

    Full text link
    The cold dark matter theory predicts triaxial dark matter haloes. The radial distribution of halo ellipticity depends on baryonic processes and the nature of dark matter particles (collisionless or collisional). Here we show that we can use lensing flexion ratios to measure the halo ellipticity as a function of radius. We introduce a weight function and study the relationship between the first and second order statistics of flexion ratios, both of which can be used to reduce the bias in the estimate of ellipticity. we perform numerical tests for our method, and demonstrate that it can reduce the bias and determine the halo ellipticity as a function of radius. We also point out that the minimum mean flexion ratio can be used to trace the centres of galaxy clusters.Comment: 9 pages,9 figures, MNRAS accepte

    Reduced-complexity non-coherent soft-decision-aided DAPSK dispensing with channel estimation

    No full text
    Differential Amplitude Phase Shift Keying (DAPSK), which is also known as star-shaped QAM has implementational advantages not only due to dispensing with channel estimation, but also as a benefit of its low signal detection complexity. It is widely recognized that separately detecting the amplitude and the phase of a received DAPSK symbol exhibits a lower complexity than jointly detecting the two terms. However, since the amplitude and the phase of a DAPSK symbol are affected by the correlated magnitude fading and phase-rotations, detecting the two terms completely independently results in a performance loss, which is especially significant for soft-decision-aided DAPSK detectors relying on multiple receive antennas. Therefore, in this contribution, we propose a new soft-decision-aided DAPSK detection method, which achieves the optimum DAPSK detection capability at a substantially reduced detection complexity. More specifically, we link each a priori soft input bit to a specific part of the channel's output, so that only a reduced subset of the DAPSK constellation points has to be evaluated by the soft DAPSK detector. Our simulation results demonstrate that the proposed soft DAPSK detector exhibits a lower detection complexity than that of independently detecting the amplitude and the phase, while the optimal performance of DAPSK detection is retained

    Forward Private Searchable Symmetric Encryption with Optimized I/O Efficiency

    Get PDF
    Recently, several practical attacks raised serious concerns over the security of searchable encryption. The attacks have brought emphasis on forward privacy, which is the key concept behind solutions to the adaptive leakage-exploiting attacks, and will very likely to become mandatory in the design of new searchable encryption schemes. For a long time, forward privacy implies inefficiency and thus most existing searchable encryption schemes do not support it. Very recently, Bost (CCS 2016) showed that forward privacy can be obtained without inducing a large communication overhead. However, Bost's scheme is constructed with a relatively inefficient public key cryptographic primitive, and has a poor I/O performance. Both of the deficiencies significantly hinder the practical efficiency of the scheme, and prevent it from scaling to large data settings. To address the problems, we first present FAST, which achieves forward privacy and the same communication efficiency as Bost's scheme, but uses only symmetric cryptographic primitives. We then present FASTIO, which retains all good properties of FAST, and further improves I/O efficiency. We implemented the two schemes and compared their performance with Bost's scheme. The experiment results show that both our schemes are highly efficient, and FASTIO achieves a much better scalability due to its optimized I/O

    The origin and properties of massive prolate galaxies in the Illustris simulation

    Full text link
    We study galaxy shapes in the Illustris cosmological hydrodynamic simulation. We find that massive galaxies have a higher probability of being prolate. For galaxies with stellar mass larger than 1011M10^{11}\rm M_{\odot}, 35 out of total 839 galaxies are prolate. For 21 galaxies with stellar mass larger than 1012M10^{12}\rm M_{\odot}, 9 are prolate, 4 are triaxial while the others are close to being oblate. There are almost no prolate galaxies with stellar mass smaller than 3×1011M3\times10^{11}\rm M_{\odot}. We check the merger history of the prolate galaxies, and find that they are formed by major dry mergers. All the prolate galaxies have at least one such merger, with most having mass ratios between 1:11:1 and 1:31:3. The gas fraction (gas mass to total baryon mass) of the progenitors is 0-3 percent for nearly all these mergers, except for one whose second progenitor contains 15%\sim 15\% gas mass, while its main progenitor still contains less than 5%5\%. For the 35 massive prolate galaxies that we find, 18 of them have minor axis rotation, and their angular momenta mostly come from the spin angular momenta of the progenitors (usually that of the main progenitor). We analyse the merger orbits of these prolate galaxies and find that most of them experienced a nearly radial merger orbit. Oblate galaxies with major dry mergers can have either radial or circular merger orbits. We further discuss various properties of these prolate galaxies, such as spin parameter λR\lambda_{\rm R}, spherical anisotropy parameter β\beta, dark matter fraction, as well as inner density slopes for the stellar, dark matter and total mass distributions.Comment: Accepted for publication in MNRAS. 24 pages, 14 figure

    Solitary wave solutions for a generalized KdV–mKdV equation with distributed delays

    Get PDF
    This paper deals with a generalized KdV–mKdV equation with time delay. By employing the geometrical singular perturbation theory and the linear chain trick, we establish the existence result of solitary wave solutions when the average delay is sufficiently small, for a special convolution kernel

    Yielding and hardening of flexible fiber packings during triaxial compression

    Full text link
    This paper examines the mechanical response of flexible fiber packings subject to triaxial compression. Short fibers yield in a manner similar to typical granular materials in which the deviatoric stress remains nearly constant with increasing strain after reaching a peak value. Interestingly, long fibers exhibit a hardening behavior, where the stress increases rapidly with increasing strain at large strains and the packing density continuously increases. Phase diagrams for classifying the bulk mechanical response as yielding, hardening, or a transition regime are generated as a function of the fiber aspect ratio, fiber-fiber friction coefficient, and confining pressure. Large fiber aspect ratio, large fiber-fiber friction coefficient, and large confining pressure promote hardening behavior. The hardening packings can support much larger loads than the yielding packings contributing to the stability and consolidation of the granular structure, but larger internal axial forces occur within fibers.Comment: 14 pages, 4 figure

    Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation

    Get PDF
    The flux ratios in the multiple images of gravitationally lensed quasars can provide evidence for dark matter substructure in the halo of the lensing galaxy if the flux ratios differ from those predicted by a smooth model of the lensing galaxy mass distribution. However, it is also possible that baryonic structures in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies. In this work, we present the first statistical analysis of flux-ratio anomalies due to baryons from a numerical simulation perspective. We select galaxies with various morphological types in the Illustris simulation and ray-trace through the simulated halos, which include baryons in the main lensing galaxies but exclude any substructures, in order to explore the pure baryonic effects. Our ray-tracing results show that the baryonic components can be a major contribution to the flux-ratio anomalies in lensed quasars and that edge-on disc lenses induce the strongest anomalies. We find that the baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8% and by about 10 - 20% in the disc lenses. The baryonic effects also induce astrometric anomalies in 13% of the mock lenses. Our results indicate that the morphology of the lens galaxy becomes important in the analysis of flux-ratio anomalies when considering the effect of baryons, and that the presence of baryons may also partially explain the discrepancy between the observed (high) anomaly frequency and what is expected due to the presence of subhalos as predicted by the CDM simulations.Comment: 16 pages, 11 figures, accepted by MNRA
    corecore