29 research outputs found

    Fine-grained fault recognition method for shaft orbit of rotary machine based on convolutional neural network

    Get PDF
    In the fault diagnosis of the shaft orbit of rotating machinery, there are few prejudgments about the severity of the faults, which is very important for fault repair. Therefore, a fine-grained recognition method is proposed to detect different severity faults by shaft orbit. Since different shaft orbits represent different type and different severity of faults, the convolutional neural network (CNN) is applied for identifying the shaft orbits to recognize the type and severity of the fault. The recognition rate of proposed fine-grained fault identification method is 97.96 % on the simulated shaft orbit database, and it takes only 0.31 milliseconds for the recognition of single sample. Experimental result indicated that the classification performance of the proposed method are better than the traditional machine learning models. Moreover, the method is applied for the identification of the measured shaft orbits of rotor with different degree of imbalance faults, and the testing accuracy of the experiments in measured shaft orbits is 97.14 %, which has verified the effectiveness of the proposed fine-grained fault recognition method

    Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures

    Get PDF
    Thermoelectric materials, which can convert waste heat into electricity, have received increasing research interest in recent years. This paper describes the recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving the power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight a way of decoupling power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride–copper telluride thermoelectric nanowire heterostructure in this work. Future possible ways to improve the figure of merit are discussed at the end of this paper

    Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit in the southern part of the Eastern Kunlun Orogenic Belt, China : A granitic intrusion-related gold deposit?

    Get PDF
    The Heihaibei gold deposit is a newly discovered gold deposit in the southern part of the Eastern Kunlun Orogenic Belt. Its most distinctive features are that the gold mineralization is hosted in monzogranite, and that the presence of pre-ore (possibly syn-ore) monzogranite and post-ore gabbro allows to constrain the minerali-zation's formation age. Zircons from the monzogranites yield U-Pb ages of 454 +/- 3 Ma, while zircons separated from the gabbro dikes cutting the monzogranites and gold mineralized body yield U-Pb ages of 439 +/- 3 Ma, which is interpreted to be the minimum age of the Au mineralizing event. Combined with the regional geological background, we proposed that the Heihaibei Au mineralization occurred during the subduction stage of the Early Paleozoic Proto-Tethys ocean. The ore assemblage is dominated by pyrite, arsenopyrite and native gold. The hydrothermal alteration that has led to the peculiar enrichment of Au is not systematically distributed and displays no clear concentric zoning pattern. The main mineralization formed during three stages: the K-feldspar-quartz-pyrite (Py1)-arsenopyrite-sericite-epidote stage (I), the quartz-pyrite (Py2)-native gold-chlorite stage (II), and the quartz-carbonate stage (III). The main gold mineralization occurred during stage II. Fluid inclusion homogenization temperature and salinities decrease from stage I (Th., 268-412 C; W., 6.87-16.63 wt% NaCl equiv.) to stage II (Th., 183-288 C; W., 3.69-14.84 wt% NaCl equiv.). The 818O and 8D values (818OH2O = 4.9 to 9.7%o; 8DV-SMOW =-84.1%o to -81.1%o) of quartz samples from stage I and stage II are comparable to a magmatic-hydrothermal ore-forming fluid that possibly underwent fluid-rock interaction with the Nachitai Group metamorphic rocks during the early ore-forming stage. The relatively uniform 834S values (834SV-CDT = 7.7 to 8.5%o) are slightly elevated compared to magmatic 834S values, but could be derived from a magma if a significant crustal melt component is present. Moreover, the 834S values are within the S isotopic composition range of a granitic reservoir, suggesting that they are probably inherited from the Heihaibei monzogranites. The Pb and Hf isotope compositions imply a close genetic association between the gold mineralization and granitic magmatism, which are both the products of the mixing of crustal and mantle sources. The trace element compositions of pyrite provide additional evidence that the gold mineralization in the Heihaibei deposit was related to the magmatism. Compared with the typical characteristics of orogenic gold and intrusion-related gold systems (IRGS) deposits, the Heihaibei gold deposit may instead be classified as a granitic intrusion-related gold deposit.Peer reviewe

    Cell-scale hemolysis evaluation of intervenient ventricular assist device based on dissipative particle dynamics

    Get PDF
    Most of the existing hemolysis mechanism studies are carried out on the macro flow scale. They assume that the erythrocyte membranes with different loads will suffer the same damage, which obviously has limitations. Thus, exploring the hemolysis mechanism through the macroscopic flow field information is a tough challenge. In order to further understand the non-physiological shear hemolysis phenomenon at the cell scale, this study used the coarse-grained erythrocytes damage model at the mesoscopic scale based on the transport dissipative particle dynamics (tDPD) method. Combined with computational fluid dynamics the hemolysis of scalarized shear stress (τ) in the clearance of “Impella 5.0” was evaluated under the Lagrange perspective and Euler perspective. The results from the Lagrange perspective showed that the change rate of scaled shear stress (τ˙) was the most critical factor in damaging RBCs in the rotor region of “Impella 5.0”and other transvalvular micro-axial blood pumps. Then, we propose a dimensionless number Dk with time integration based on τ˙ to evaluate hemolysis. The Dissipative particle dynamics simulation results are consistent with the Dk evaluation results, so τ˙ may be an important factor in the hemolysis of VADs. Finally, we tested the hemolysis of 30% hematocrit whole blood in the “Impella 5.0” shroud clearance from the Euler perspective. Relevant results indicate that because of the wall effect, the RBCs near the impeller side are more prone to damage, and most of the cytoplasm is also gathered at the rotor side

    Information Design for Multiple Interdependent Defenders: Work Less, Pay Off More

    No full text
    This paper studies the problem of information design in a general security game setting in which multiple self-interested defenders attempt to provide protection simultaneously for the same set of important targets against an unknown attacker. A principal, who can be one of the defenders, has access to certain private information (i.e., attacker type), whereas other defenders do not. We investigate the question of how that principal, with additional private information, can influence the decisions of the defenders by partially and strategically revealing her information. In particular, we develop a polynomial time ellipsoid algorithm to compute an optimal private signaling scheme. Our key finding is that the separation oracle in the ellipsoid approach can be carefully reduced to bipartite matching. Furthermore, we introduce a compact representation of any ex ante persuasive signaling schemes by exploiting intrinsic security resource allocation structures, enabling us to compute an optimal scheme significantly faster. Our experiment results show that by strategically revealing private information, the principal can significantly enhance the protection effectiveness for the targets

    Antitumor Effects of Laminaria Extract Fucoxanthin on Lung Cancer

    No full text
    Lung cancer is the leading cause of cancer mortality worldwide and non-small-cell lung cancer (NSCLC) is the most common type. Marine plants provide rich resources for anticancer drug discovery. Fucoxanthin (FX), a Laminaria japonica extract, has attracted great research interest for its antitumor activities. Accumulating evidence suggests anti-proliferative effects of FX on many cancer cell lines including NSCLCs, but the detailed mechanisms remain unclear. In the present investigation, we confirmed molecular mechanisms and in vivo anti-lung cancer effect of FX at the first time. Flow cytometry, real-time PCR, western blotting and immunohistochemistry revealed that FX arrested cell cycle and induced apoptosis by modulating expression of p53, p21, Fas, PUMA, Bcl-2 and caspase-3/8. These results show that FX is a potent marine drug for human non-small-cell lung cancer treatment

    Identification Method of Shaft Orbit in Rotating Machines Based on Accurate Fourier Height Functions Descriptors

    No full text
    In this paper, an algorithm based on two novel shape descriptors and support vector machine (SVM) is proposed to improve the recognition accuracy and speed of shaft orbits of rotating machines. Firstly, two novel shape descriptors, respectively, named accurate Fourier height functions 1 (AFHF1) and accurate Fourier height functions 2 (AFHF2) are presented based on height function (HF) and Fourier transformation. Both AFHF1 and AFHF2 shape descriptors are constant to similarity transforms and also have intrinsic invariance to the starting point change and are more compacted than HF. Therefore, they perform well on the global or local features of the contours of shaft orbits. Then, the AFHF1 and AFHF2 shape descriptors are utilized to extract features of shaft orbits in the simulated dataset and measured dataset. Taking extracted feature vectors as the input, SVM is adopted in order to classify the fault types according to the shapes of shaft orbits. Finally, a series of descriptors including shape context (SC), inner-distance shape context (IDSC), triangular centroid distances (TCDs), and HF were compared to verify the performance of the proposed AFHF1 and AFHF2 shape descriptors. The average accuracy of our method in simulated dataset and measured dataset are all higher than 99.83%, the average recognition time of each sample is no more than 19 milliseconds. The experiments demonstrate that the proposed method has the best recognition accuracy and real-time and antinoise performance

    Speed-loop bandwidth design method for controller parameters of ship hydrogen storage DC electric propulsion system

    No full text
    ObjectivesThis paper aims to study the problems that the external electrical characteristics of a hydrogen fuel cell are soft, its dynamic characteristics are poor and its system stability is susceptible to the influence of propulsion load in marine hydrogen storage DC electric propulsion systems. MethodsFirst, an analysis is performed of the output external electrical characteristics of the hydrogen fuel cell and the propeller load conditions of the marine electric propulsion system, then a ship-engine-propeller model and a frequency-domain model of drive control system for a permanent magnet synchronous motor (PMSM) are set up. Next, a speed-loop bandwidth design method is proposed, considering the external electrical characteristics of hydrogen fuel cell and propeller load conditions. Finally, on basis of the parameters of a mother ship, an electric propulsion system for a hydrogen-battery DC electric propulsion ship in a hardware-in-loop experimental platform is established to verify the proposed method.ResultsThe experimental results show that the speed response of the motor has no overshoot under this method, and the speed-loop fluctuation is reduced by 5 r/min when the load torque disturbance occurs. ConclusionsThe speed-loop bandwidth design method proposed in this paper improves the comprehensive characteristics of the ship hydrogen storage DC electric propulsion system, and is easy to implement in engineering

    New Construction Technology of a Shallow Tunnel in Boulder-Cobble Mixed Grounds

    No full text
    As a typical granular bulk medium, problems are common in boulder-cobble mixed grounds, such as easy collapse and instability and difficult effective support for large-section tunnel excavation. Tunnels constructed in BCM grounds are rare still, and there is a big gap between the design and construction of tunnels. Based on the Nianggaicun highway tunnel crossing the BCM grounds, the construction technology of tunnel in BCM grounds is studied by means of literature investigation and field survey. Here are the main conclusions: the overall deformation of surrounding rock is quite small; the pressure distribution of surrounding rock is small and loose pressure is dominant, and the safety reserve of secondary lining is large. The deformation process of surrounding rock concentrates on the construction stage. During the construction process, there are many problems, such as serious overexcavation, difficulty of bolt penetration, and continuous rock fall. In this paper, a three-bench complementary cyclic excavation method is proposed, which replaces the original CD and CRD methods. Meanwhile, the supporting system is optimized. The results show that the disturbance of surrounding rock is reduced, while the safety of construction process and the reliability of structure are increased. The new excavation method and optimized supporting system are expected to fill the gap between design and construction of tunnel in BCM grounds and provide reference for construction of such tunnels in the future
    corecore