8 research outputs found

    Conversion induite par la pression de complexes carrés Fe2Co2 paramagnétiques en commutateurs moléculaires

    No full text
    Les commutateurs magnĂ©tiques molĂ©culaires subissant des changements drastiques dans leurs propriĂ©tĂ©s optiques, magnĂ©tiques, diĂ©lectriques ou mĂ©caniques suscitent un vif intĂ©rĂȘt pour leur utilisation potentielle dans la fabrication de capteurs, d'actionneurs et de dispositifs de mĂ©moire Ă  base de molĂ©cules. Dans ces solides molĂ©culaires, des stimuli externes tels que la lumiĂšre, la tempĂ©rature et la pression peuvent basculer de maniĂšre rĂ©versible les propriĂ©tĂ©s Ă©lectroniques et structurelles entre deux Ă©tats bien caractĂ©risĂ©s. Les complexes bimĂ©talliques Ă  pont cyanure sont l'un de ces interrupteurs molĂ©culaires intĂ©ressants. La plupart de ces Ă©tudes se concentrent sur l'utilisation de l'irradiation lumineuse et de la tempĂ©rature comme stimuli externes. Cependant, la pression hydrostatique devrait Ă©galement ĂȘtre un moyen efficace pour moduler l'Ă©cart d'Ă©nergie entre deux Ă©tats de spin de composĂ©s de type carrĂ© [Ă©tat dia- et para-magnĂ©tique], dĂ©clenchant ainsi la commutation des propriĂ©tĂ©s. Par analogie avec les composĂ©s Ă  transition de spin, le carrĂ© Fe2Co2 publiĂ© par Li D. F. et al en 2014 a affichĂ© un comportement dit normal : il montre initialement une transition dia-para graduelle et partielle, qui devient plus graduelle lors de l'application d'une pression. En raison du manque d'Ă©tudes dia-para induites par la pression dans les complexes molĂ©culaires cyanure-FeCo, nous avons dĂ©cidĂ© d'explorer ce domaine de recherche rare et intĂ©ressant. Le premier chapitre du manuscrit dĂ©crit en dĂ©tail tout le contexte de recherche mentionnĂ© ci-dessus et l'objectif du doctorat. Dans le chapitre 2 de ce manuscrit, nous dĂ©crivons la conversion par la pression d'un premier carrĂ© Fe2Co2 paramagnĂ©tique, de formule {[Fe(Tp)(CN)3]2[Co(vbik)2]2}(BF4)2‱2MeOH (1), en un complexe bistable. Ce composĂ© prĂ©sente un piĂ©geage cinĂ©tique Ă  pression ambiante et montre un comportement magnĂ©tique sous pression diffĂ©rent et inhabituel par rapport au cas Ă©tudiĂ© par Li D.F. La conversion induite par la pression de l'Ă©tat paramagnĂ©tique FeIIICoII en un Ă©tat diamagnĂ©tique FeIICoIII est rĂ©versible et complĂšte mĂȘme Ă  une petite pression de 0,11 GPa. Cette conversion s'accompagne d'une hystĂ©rĂ©sis croissante avec une pression croissante. Par les spectres HP-XRD et HP-Raman, nous avons Ă©tudiĂ© le phĂ©nomĂšne inhabituel pour Ă©tablir des corrĂ©lations structure-propriĂ©tĂ©s. Notre analyse concluent que des interactions intermolĂ©culaires particuliĂšres seraient responsables des propriĂ©tĂ©s magnĂ©tiques inhabituelles. Ensuite, dans les chapitres 3 et 4, nous avons Ă©galement synthĂ©tisĂ© des composĂ©s paramagnĂ©tiques de {[Fe(Tp)(CN)3]2[Co(vbik)2]2}(PF6)2 ‱ 2MeOH (3) en ajustant le contre-ion, et {[Fe(Tp*) (CN)3]2[Co(Mebik)2]2}·(BF4)2·2H2O (1*) en remplaçant les ligands Tp et vbik para des ligands apparentĂ©s mĂ©thylĂ©s, Tp* et Mebik. Le composĂ© 3 avec une distorsion de la sphĂšre de coordination du cobalt Ă©levĂ©e et une interaction intermolĂ©culaire plus forte est mieux stabilisĂ© Ă  l'Ă©tat paramagnĂ©tique Il montre par ailleurs une transition de phase avec l'application de pression. Le composĂ© 1* prĂ©sente une transition en deux Ă©tapes Ă  une pression de 1,0 GPa. CombinĂ© avec le composĂ© 1, l'interaction intermolĂ©culaire plus forte est plus encline Ă  stabiliser les Ă©tats paramagnĂ©tiques, et l'interaction de la liaison H impliquant le cyanure terminal et le solvant semble jouer un rĂŽle dans la transition diamagnĂ©tique Ă  paramagnĂ©tique.Molecular magnetic switches undergoing drastic changes in their optical, magnetic, dielectric, or mechanical properties focus strong interest for their potential use in the manufacture of molecule-based sensors, actuators, and memory devices. In these molecular solids, external stimuli such as light, temperature, and pressure can reversibly switch the electronic and structural properties between two well-characterized states. The cyanide-bridged bimetallic complexes are one of these interesting molecular switches. Most of the published studies focus on the use of light irradiation and temperature as external stimuli. However, the hydrostatic pressure is also expected to be an efficient means to reverse the energy gap between two spin states of square-like compounds [dia- and para-magnetic states], thus triggering the switching of the properties. By analogy with spin-transition compounds, the de- Fe2Co2 square reported by Li D. F. et al. in 2014 displayed a normal behavior: it initially shows gradual and partial ETCST transition, which becomes more gradual upon the application of pressure. Due to the lack of pressure-induced ETCST studies in the cyanide-FeCo molecular complexes, we decided to explore further this rare and interesting research field. Chapter one of the manuscript describes in detail all the above-mentioned research context and the goal of the Ph.D. work. In chapter 2 of this manuscript, we describe the conversion by the pressure of a first paramagnetic Fe2Co2 square, of formula {[Fe(Tp)(CN)3]2[Co(vbik)2]2}(BF4)2‱2MeOH (1), into a bistable complex (vbik is a bis(1-vinylimidazol-2-yl)ketone ligand, Tp is the hydrotris(pyrazol-1-yl)borate ligand). This compound is kinetically trapped in the paramagnetic state at ambient pressure and shows unusual magnetic behavior under pressure compared with the case studied by Li D.F. The pressure-induced conversion of the FeIIICoII paramagnetic state into a FeIICoIII diamagnetic state is reversible and complete even at a small pressure of 0.11 GPa, Moreover the compound shows a thermally induced hysteresis, which width increases as the pressure increases. By HP-XRD and HP-Raman spectra, we studied this unusual phenomenon to establish structure-properties relationships. Our analysis indicates that peculiar intermolecular interactions are likely responsible for the unusual magnetic properties. Then in the third and fourth chapters, we also further synthesized new paramagnetic compounds, {[Fe(Tp)(CN)3]2[Co(vbik)2]2}(PF6)2 ‱ 2MeOH (3) by adjusting counterion, and {[Fe(Tp*)(CN)3]2[Co(Mebik)2]2}·(BF4)2·2H2O (1*) by replacing Tp with the methylated Tp* ligand and changing vbik by the methylated “Mebik” ligand (bis(1-methyl imidazole-2-yl)ketone). Compound 3 with a higher distortion of the cobalt coordination sphere and stronger intermolecular interaction is better stabilized in the paramagnetic state. It also shows a crystal phase transition with applying pressure. Compound 1* shows a two-step transition at a pressure of 1.0 GPa. Combined with compound 1, the stronger intermolecular interaction is more inclined to stabilize paramagnetic states, and an H-bond interaction involving the terminal cyanide and the solvent is believed to play a role in the diamagnetic to paramagnetic transition. In conclusion, the pressure studies remain very limited in comparison to those involving the temperature or the light stimuli because the magnetic and structural studies at high pressure are remain quite challenging. In this Ph.D, which is the first one dealing with pressure-induced dia-para conversion in our group, new original piezo-switchable properties have been obtained. We hope this work will motivate other colleagues to explore the potentialities of the FeCo molecular system as pressure-sensitive molecular switches

    (Acetato-κO)bis(1,10-phenanthroline-κ2N,N′)copper(II) acetate heptahydrate

    Get PDF
    In the title complex, [Cu(CH3CO2)(C12H8N2)2](CH3CO2)·7H2O, the central CuII ion is five coordinate, being bound to four N atoms from two 1,10-phenanthroline ligands and one O atom from an acetate anion in a strongly distorted square-pyramidal configuration. Hydrogen-bonded water molecules and an uncoordinated acetate anion form a two-dimensional polymeric structure parallel to (010). The cations are linked to this layer via O—H...O hydrogen bonds between one of the water molecules and the coordinated acetate anion

    Pressure‐Induced Conversion of a Paramagnetic FeCo Complex into a Molecular Magnetic Switch with Tuneable Hysteresis

    No full text
    International audienceA key challenge in the design of magnetic molecular switches is to obtain bistability at room temperature. Here, we show that application of moderate pressure makes it possible to convert a paramagnetic FeIII2CoII2 square complex into a molecular switch exhibiting a full dia‐ to paramagnetic transition: FeIICoIII ⇔ FeIIICoII. Moreover, the complex follows a rare behavior: the higher the pressure, the broader the magnetic hysteresis. Thus, the application of an adequate pressure allows inducing a magnetic bistability at room temperature with predictable hysteresis width. The structural studies at different pressures suggest that the pressure‐enhanced bistability is due to the strengthening of intermolecular interactions upon pressure increase. An original microscopic Ising‐like model including pressure effects is developed to simulate this unprecedented behavior. Overall, this study shows that FeCo complexes could be very sensitive piezo switches with potential use as sensors
    corecore