46 research outputs found

    Catalytic removal of 1,2-dichloroethane over LaSrMnCoO6/H-ZSM-5 composite: insights into synergistic effect and pollutant-destruction mechanism

    Get PDF
    LaxSr2−xMnCoO6 materials with different Sr contents were prepared by a coprecipitation method, with LaSrMnCoO6 found to be the best catalyst for 1,2-dichloroethane (DCE) destruction (T90 = 509 °C). As such, a series of LaSrMnCoO6/H-ZSM-5 composite materials were rationally synthesized to further improve the catalytic activity of LaSrMnCoO6. As expected, the introduction of H-ZSM-5 could remarkably enlarge the surface area, increase the number of Lewis acid sites, and enhance the mobility of the surface adsorbed oxygen species, which consequently improved the catalytic activity of LaSrMnCoO6. Among all the composite materials, 10 wt% LaSrMnCoO6/H-ZSM-5 possessed the highest catalytic activity, with 90% of 1,2-DCE destructed at 337 °C, which is a temperature reduction of more than 70 °C and 170 °C compared with that of H-ZSM-5 (T90 = 411 °C) and LaSrMnCoO6 (T90 = 509 °C), respectively. Online product analysis revealed that CO2, CO, HCl, and Cl2 were the primary products in the oxidation of 1,2-DCE, while several unfavorable reaction by-products, such as vinyl chloride, 1,1,2-trichloroethane, trichloroethylene, perchloroethylene, and acetaldehyde, were also formed via dechlorination and dehydrochlorination processes. Based on the above results, the reaction path and mechanism of 1,2-DCE decomposition are proposed

    A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: Synthesis, Characterization, and Electrochemical properties

    Get PDF
    Nanocomposites were successfully synthesized by the oxidative polymerization of p-anisidine and/or aniline monomers (at initial “p-anisidine:aniline” mole ratios of “100 : 0,” 50 : 50,” and “0 : 100”) with titanium(IV) oxide nanoparticles, in the presence of hydrochloric acid as a dopant with ammonium persulfate as an oxidant. The morphological, structural, conductivity, and electrochemical properties of the synthesized nanocomposites were studied using Transmission Electron Microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV–vis spectroscopies. The presence of polymer on TiO2 nanoparticles in samples nanocomposites was confirmed by the Transmission Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy. The thermal stability of samples nanocomposites were evaluated using the Thermogravimetric Analysis. Electrical conductivity of nanocomposites obtained is in the range of 0.08 − 0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization on TiO2 nanoparticles produces electroactive polymers. These composite microspheres can potentially be used in commercial applications as fillers for antistatic and anticorrosion coatings.National Assessment and Planning Committee of the University Research (CNEPRU); contract grant number: E-03720130015; contract grant sponsor: MINECO; contract grant number: MAT2013-42007-P; contract grant sponsor: Generalitat Valenciana; contract grant number: PROMETEO2013/038; contract grant sponsor: Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria

    Digital twin-based multi-level task rescheduling for robotic assembly line

    No full text
    Abstract Assembly is a critical step in the manufacturing process. Robotic assembly technology in automatic production lines has greatly improved the production efficiency. However, in assembly process, dynamic disturbances such as processing time change and advance delivery may occur, which cause the scheduling deviation. Traditional scheduling methods are not sufficient to meet the real-time and adaptive requirements in smart manufacturing. Digital twin (DT) has the characteristics of virtual-reality interaction and real-time mapping. In this paper, we propose a DT-based framework of task rescheduling for robotic assembly line (RAL) and its key methodologies, thus to realize the timely and dynamic adjustment of scheduling plan under uncertain interferences. First, a DT model of RAL task rescheduling composed of physical entity (PE), virtual entity (VE), and virtual-reality interaction mechanism is proposed. Then, a mathematical model is established. By analyzing the adaptive objective thresholds from the perspectives of event trigger and user demand trigger, a DT-driven multi-level (production unit level and line level) rescheduling strategy is proposed. Taking both the computing time and solution quality into consideration, the precedence graph is introduced to propose a rescheduling approach based on an improved discrete fireworks algorithm. Finally, the effectiveness of the proposed model and approach are verified by task scheduling experiments of RAL

    Increased expression of cell adhesion molecules in myofasciitis

    Get PDF
    BackgroundMyofasciitis is a heterogeneous group of diseases pathologically characterized by inflammatory cell infiltration into the fascia. Endothelial activation plays a critical role in the pathogenesis of the inflammatory response. However, the expression of cellular adhesion molecules (CAMs) in myofasciitis has not been investigated.MethodsData on clinical features, thigh magnetic resonance imaging, and muscle pathology were collected from five patients with myofasciitis. Immunohistochemical (IHC) staining and Western blot (WB) of the muscle biopsies from patients and healthy controls were performed.ResultsIncreased levels of serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-2R, were detected in four patients. IHC staining and WB indicated significantly increased expression of cell adhesion molecules in blood vessels or inflammatory cells within the perimysium in muscle and fascia tissues of patients with myofasciitis compared to controls.ConclusionThe up-regulation of CAMs in myofasciitis indicates endothelial activation, which may be potential therapy targets for the treatment of myofasciitis

    The Clinicopathological Distinction between Immune-Mediated Necrotizing Myopathy and Limb–Girdle Muscular Dystrophy R2: Key Points to Prevent Misdiagnosis

    No full text
    Background: Limb–girdle muscular dystrophy R2 (LGMD R2) is most frequently misdiagnosed as immune-mediated necrotizing myopathy (IMNM). This study aimed to compare the clinicopathological data of IMNM and LGMD R2 to find distinguishing features. Methods: We retrospectively reassessed the medical data of patients with IMNM (n = 41) and LGMD R2 (n = 8) treated at Tongji Hospital from January 2017 to December 2021. Results: In our cohort, patients with LGMD R2 had a longer interval of onset to first visit, mild muscle weakness with late upper limb involvement, less myalgia, no cervical muscle weakness or dysphagia, no extramuscular organs affected except cardiac involvement, and lack of various autoantibodies, such as antinuclear antibodies. These features were completely reversed in IMNM. Moreover, thigh MRIs showed that muscle edema prominently affecting the adductor magnus was a characteristic of IMNM, while extensive fatty replacement was more common in LGMD R2 (p = 0.0086). Necrotic myofibers presented in both entities (p = 0.1693), while features such as ring/whorled and splitting myofibers were more often found in LGMD R2 (p = 0.0112 and p p < 0.05). There were 4 of 8 (50%) patients with LGMD R2 initially considered as seronegative IMNM, and therefore unnecessarily treated with immunosuppressive drugs. Insufficient recognition of the early clinical, imaging, and histopathological features of LGMD R2 is the main reason for misdiagnosis. Conclusions: These findings may help clinicians differentiate seronegative IMNM and LGMD R2, reducing early misdiagnosis and mismanagement. Particularly, prominent adductor magnus edema on MRI and abundant p62 staining seem to be good markers for IMNM, while the presence of splitting myofibers is a crucial clue to early hereditary myopathy, including LGMD R2

    Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    No full text
    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) Îł spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 ÎŒSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level
    corecore