26 research outputs found

    G-CSF mobilized PBMCs contribute to the liver function of cirrhotic rats

    Get PDF
    On the basis of the recently recognized potential of bone marrow stem cells to give rise to hepatocytes, we here investigated the role of G-CSF priming PBMCs played in the liver of cirrhotic rats. The animal model of liver cirrhosis was induced by injecting CCl4 in SD rats, and G-CSF was administered in hematopoietic stem cell mobilization doses. After the liver cirrhosis model was established, the female cirrhotic rats were divided into two groups. Group I only received G-CSF mobilization, group II received G-CSF mobilized PBMCs transplanted from the male cirrhotic rats. PKH26 staining and sex-determining region for the Y-chromosome gene were used to trace the transplanted cells. Liver function related factors were assayed under the animal automatic biochemistry analyzer, and the liver pathological changes were evaluated by HE staining. The comparative liver functions of the two groups were investigated by analysis of two sample t-tests. A P value of <0.05 was considered as significant in all analyses. Our results showed that the transplanted PBMCs could locate in the livers of the female rats. In addition, compared with the group I, rats in group II displayed significant liver improvement in serum ALB, ALT, AST and TBIL (p<0.05). However, the semi-quantitative classification of the liver pathological changes in both groups did not indicate a significant difference (p>0.05). The results indicated that mobilized PBMC transplant could contribute to liver function in cirrhotic livers, which might be an alternative therapy for liver cirrhosis

    Bifurcations and Stability of Nondegenerated Homoclinic Loops for Higher Dimensional Systems

    Get PDF
    By using the foundational solutions of the linear variational equation of the unperturbed system along the homoclinic orbit as the local current coordinates system of the system in the small neighborhood of the homoclinic orbit, we discuss the bifurcation problems of nondegenerated homoclinic loops. Under the nonresonant condition, existence, uniqueness, and incoexistence of 1-homoclinic loop and 1-periodic orbit, the inexistence of k-homoclinic loop and k-periodic orbit is obtained. Under the resonant condition, we study the existence of 1-homoclinic loop, 1-periodic orbit, 2-fold 1-periodic orbit, and two 1-periodic orbits; the coexistence of 1-homoclinic loop and 1-periodic orbit. Moreover, we give the corresponding existence fields and bifurcation surfaces. At last, we study the stability of the homoclinic loop for the two cases of non-resonant and resonant, and we obtain the corresponding criterions

    Growth and Optical Properties of the Whole System of Li(Mn1x_{1-x},Nix_{x})PO4_{4} (0 ≤ x ≤ 0.5) Single Crystals

    Get PDF
    A series of single crystals of Li(Mn1x_{1-x},Nix_{x})PO4_{4} (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.15, 0.20, and 0.50) have been grown to large sizes up to 5 mm in diameter and 120 mm in length using the floating zone method for the first time. The comprehensive characterizations of the as-grown crystals were performed before further physical property measurements. The composition of the grown crystals was determined by energy-dispersive X-ray spectroscopy. The crystal structures were characterized by the X-ray powder diffraction method with a GSAS fitting for structural refinement, which reveals a high phase purity of the as-obtained crystals. The polarized microscopic images and Laue patterns prove the excellent quality of the single crystals. Oriented cuboids with sizes of 2.7 × 3.8 × 2.1 mm31x3{1-x} along the a, b, and c crystalline directions were cut and polished for further anisotropic magnetic and transparent measurements. We also first proposed a new potential application in the non-linear optical (NLO) and laser generation application for LiMPO4_{4} (M = transition metal) materials. The optical and laser properties, such as the absorption spectra and the second harmonic generation (SHG), have been investigated and have furthermore confirmed the good quality of the as-grown single crystals

    The Electronic Structural and Defect-Induced Absorption Properties of a Ca2_{2}B10_{10}O14_{14}F6_{6} Crystal

    Get PDF
    Comprehensive ab initio electronic structure calculations were performed for a newly developed deep-ultraviolet (DUV) non-linear optical (NLO) crystal Ca2_{2}B10_{10}O14_{14}F6_{6} (CBOF) using the first principle method. Fifteen point defects including interstitial, vacancy, antisite, Frenkel, and Schottky of Ca, O, F, and B atoms in CBOF were thoroughly investigated as well as their effects on the optical absorption properties. Their formation energies and the equilibrium concentrations were also calculated by ab initio total energy calculations. The growth morphology was quantitatively analyzed using the Hartman–Perdok approach. The formation energy of interstitial F (Fi) and antisite defect OF_{F} were calculated to be approximately 0.33 eV and 0.83 eV, suggesting that they might be the dominant defects in the CBOF material. The absorption centers might be induced by the O and F vacancies (VF_{F}, VO_{O}), interstitial B and O (Oi_{i}, Bi_{i}), and the antisite defect O substitute of F (OF_{F}), which might be responsible for lowering the damage threshold of CBOF. The ionic conductivity might be increased by the Ca vacancy (Vca_{ca}), and, therefore, the laser-induced damage threshold decreases

    Functional Connectivity of Anterior Insula Predicts Recovery of Patients With Disorders of Consciousness

    Get PDF
    Background: We hypothesize that the anterior insula is important for maintenance of awareness. Here, we explored the functional connectivity alterations of the anterior insula with changes in the consciousness level or over time in patients with disorders of consciousness (DOC) and determined potential correlation with clinical outcomes.Methods: We examined 20 participants (9 patients with DOC and 11 healthy controls). Each patient underwent resting-state functional magnetic resonance imaging (rs-fMRI) and a standardized Coma Recovery Scale-Revised (CRS-R) assessment on the same day. We categorized the patients according to the prognosis: those who emerged from a minimally conscious state (recovery group, n = 4) and those who remained in the unconscious state (unrecovery group, n = 5). Two rs-fMRI scans were obtained from all patients, and the second scan of patients in the recovery group was obtained after they regained consciousness. We performed seed-based fMRI analysis and selected the left ventral agranular insula (vAI) and dorsal agranular insula (dAI) as the regions of interest. Correlations with CRS-R were determined with the Spearman's correlation coefficient.Results: Compared with healthy controls, the functional connectivity between dAI and gyrus rectus of patients who recovered was significantly increased (p &lt; 0.001, cluster-wise family-wise error rate [FWER] &lt; 0.05). The second rs-fMRI scan of patients who remained with DOC showed a significant decreased functional connectivity between the dAI to contralateral insula, pallidum, bilateral inferior parietal lobule (IPL), precentral gyrus, and middle cingulate cortex (p &lt; 0.001, cluster-wise FWER &lt; 0.05) as well as the functional connectivity between vAI to caudate and cingulum contrast to controls (p &lt; 0.001, cluster-wise FWER &lt; 0.05). Finally, the functional connectivity strength of dAI-temporal pole (Spearman r = 0.491, p &lt; 0.05) and dAI-IPL (Spearman r = 0.579, p &lt; 0.05) were positively correlated with CRS-R scores in all DOC patients. The connectivity of dAI-IPL was also positively correlated with clinical scores in the recovery group (Spearman r = 0.807, p &lt; 0.05).Conclusions: Our findings indicate that the recovery of consciousness is associated with an increased connectivity of the dAI to IPL and temporal pole. This possibly highlights the role of the insula in human consciousness. Moreover, longitudinal variations in dAI-IPL and dAI-temporal pole connectivity may be potential hallmarks in the outcome prediction of DOC patients

    Bifurcations of Nontwisted Heteroclinic Loop with Resonant Eigenvalues

    No full text
    By using the foundational solutions of the linear variational equation of the unperturbed system along the heteroclinic orbits to establish the local coordinate systems in the small tubular neighborhoods of the heteroclinic orbits, we study the bifurcation problems of nontwisted heteroclinic loop with resonant eigenvalues. The existence, numbers, and existence regions of 1-heteroclinic loop, 1-homoclinic loop, 1-periodic orbit, 2-fold 1-periodic orbit, and two 1-periodic orbits are obtained. Meanwhile, we give the corresponding bifurcation surfaces

    Implicit reading in Chinese pure alexia

    No full text
    Science and Technology Project of Zhejiang Province [2007C33007]; Zhejiang Province Funds [Y2080132]; Key Project of Education Department of Zhejiang Province [Z200805185]A number of recent studies have shown that some patients with pure alexia display evidence of implicit access to lexical and semantic information about words that they cannot read explicitly. This phenomenon has not been investigated systematically in Chinese patients. We report here a case study of a Chinese patient who met the criteria for pure alexia and had lesions in the left occipitotemporal region and the splenium of the corpus callosum. His explicit and implicit reading was evaluated with various stimuli in a number of tasks. We found that despite his severe impairment in overt reading and the definition of any characters, his performance was well above chance in various implicit tasks. His accuracy with respect to lexical decisions was so high that his performance was almost normal. These findings provide unequivocal evidence for the existence of implicit reading in Chinese patients with pure alexia and further support the involvement of the right hemisphere. (C) 2010 Elsevier Inc. All rights reserved

    Investigations of the kinetics and mechanism of reduction of a carboplatin pt(IV) prodrug by the major small-molecule reductants in human plasma

    No full text
    The development of Pt(IV) anticancer prodrugs to overcome the detrimental side effects of Pt(II)-based anticancer drugs is of current interest. The kinetics and reaction mechanisms of the reductive activation of the carboplatin Pt(IV) prodrug cis,trans-[Pt(cbdca)(NH3)2Cl2] (cbdca = cyclobutane-1,1-dicarboxylate) by the major small-molecule reductants in human plasma were analyzed in this work. The reductants included ascorbate (Asc), the thiol-containing molecules L-cysteine (Cys), DL-homocysteine (Hcy), and glutathione (GSH), and the dipeptide Cys–Gly. Overall second-order kinetics were established in all cases. At the physiological pH of 7.4, the observed second-order rate constants k′ followed the order Asc << Cys–Gly ~ Hcy < GSH < Cys. This reactivity order together with the abundances of the reductants in human plasma indicated Cys as the major small-molecule reductant in vivo, followed by GSH and ascorbate, whereas Hcy is much less important. In the cases of Cys and GSH, detailed reaction mechanisms and the reactivity of the various protolytic species at physiological pH were derived. The rate constants of the rate-determining steps were evaluated, allowing the construction of reactivity-versus-pH distribution diagrams for Cys and GSH. The diagrams unraveled that species III of Cys (−SCH2CH(NH3 +)COO−) and species IV of GSH (−OOCCH(NH3 +)CH2CH2CONHCH(CH2S−)-CONHCH2COO−) were exclusively dominant in the reduction process. These two species are anticipated to be of pivotal importance in the reduction of other types of Pt(IV) prodrugs as well
    corecore