62 research outputs found

    Dynamic response analysis in bolted joint structure with viscoelastic layer and experimental investigations

    Get PDF
    In this paper, the dynamic response characteristics of a common double shear lap joint structure with viscoelastic layer are investigated. Firstly, an analytical model is established in shear vibration based on phenomenological model. The fourth order Runge-Kutta method is employed to calculate the harmonic response, where the effect of Coulomb friction and excitation levels on system are presented. Secondly, a new nonlinear finite element model for the bolted joint structure with viscoelastic layer is developed. The simulation results show good agreement with the corresponding experimental results. Finally, the proposed harmonic excitation experiments with laser vibrometer in tangential direction are carried out to investigate the nonlinear behaviors of system, as well as the influence of bolt preload and viscoelastic material on dynamic characteristics of the bolted joint beam. The results show that the viscoelastic layer help reduce vibration at certain extent, especially in the high frequency region of vibration, and some peak frequencies of system can be changed through the viscoelastic layer

    Penerapan Pendekatan Pengajaran Terbalik (Reciprocal Teaching) Untuk Meningkatkan Kemandirian Belajar Biologi Siswa Kelas Vii-g SMP N 5 Karanganyar Tahun Pelajaran 2010/ 2011

    Full text link
    – The objective of this study is to improve student independence in learning biology by implementing Inverted Teaching Approach (Reciprocal Teaching) on Environmental Management material. This research is a classroom action research. This research was conducted in two cycles. Each cycle consisted of planning, implementation of the action,observation, and reflection. The subjects of the study were VII-G class students of SMP Negeri 5 Karanganyar in the academic year of 2010/2011. The number of the students was 32. The technique and instrumen of collectiing data were questionnaire, observation, and interviews. The technique of analyzing data was descriptive analysis techniques. Triangulation technique was used in data validation. The results proved that by implementing Inverted Teaching Approach (Reciprocal Teaching) students\u27 independence in learning biology enhanced. It is based on the results of questionnaires, observations and interviews. The questionnaire of students\u27 learning independence showed that the mean percentage of students\u27 achievement in each indicator in pre-cycle, cycle I, and cycle II was 67.97%, 72.55%, and 77.58% respectively. The observation of students\u27 learning independence showed that the mean percentage of students\u27 achievement in each indicator in pre-cycle, cycle I, and cycle II was 39.68%, 67.5%, and 80.62% respectively. It can be concluded that the implementation of Inverted Teaching Approach (Reciprocal Teaching) can enhance students learning independence

    STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks

    Get PDF
    Spiking Neural Networks (SNNs) have shown great promise in processing spatio-temporal information compared to Artificial Neural Networks (ANNs). However, there remains a performance gap between SNNs and ANNs, which impedes the practical application of SNNs. With intrinsic event-triggered property and temporal dynamics, SNNs have the potential to effectively extract spatio-temporal features from event streams. To leverage the temporal potential of SNNs, we propose a self-attention-based temporal-channel joint attention SNN (STCA-SNN) with end-to-end training, which infers attention weights along both temporal and channel dimensions concurrently. It models global temporal and channel information correlations with self-attention, enabling the network to learn ‘what’ and ‘when’ to attend simultaneously. Our experimental results show that STCA-SNNs achieve better performance on N-MNIST (99.67%), CIFAR10-DVS (81.6%), and N-Caltech 101 (80.88%) compared with the state-of-the-art SNNs. Meanwhile, our ablation study demonstrates that STCA-SNNs improve the accuracy of event stream classification tasks

    Analytical Model of Bolted Joint Structure and Its Nonlinear Dynamic Characteristics in Transient Excitation

    No full text
    The dynamic response of crucial components often depends upon the dynamic behavior of bolted connections. As is usually the case, the accurate modeling of structures with many mechanical joints remains a challenge work. The nonlinear behavior included in assembled structures strongly depends on the interface properties. In this paper, an analytical model of the simple bolted joint beam in tangential direction is first proposed for transient excitation, based on phenomenological model. The fourth-order Runge-Kutta method is employed to calculate the transient response, where the dynamic response of the nonlinear stiffness on system is also investigated. The simulation results show that natural frequency has a certain dependence on cubic stiffness term and cubic stiffness is more suitable for modeling of nonlinear system of a wider frequency range. Thereby, a series Iwan model containing cubic stiffness term is established to describe nonlinear behaviors of bolted joint beams in shear vibration. The amplitude-frequency curves show that the influence of interaction between nonlinear stiffness and damping mechanism on dynamic response characteristics is more obvious. Finally, a new type of nonlinear model is applied into finite element analysis. The results of proposed transient excitation experiment are discussed qualitatively, indicating that nonlinear effects observed agree with the numerical simulation results

    Metformin Affects Heme Function as a Possible Mechanism of Action

    No full text
    Metformin elicits pleiotropic effects that are beneficial for treating diabetes, as well as particular cancers and aging. In spite of its importance, a convincing and unifying mechanism to explain how metformin operates is lacking. Here we describe investigations into the mechanism of metformin action through heme and hemoprotein(s). Metformin suppresses heme production by 50% in yeast, and this suppression requires mitochondria function, which is necessary for heme synthesis. At high concentrations comparable to those in the clinic, metformin also suppresses heme production in human erythrocytes, erythropoietic cells and hepatocytes by 30–50%; the heme-targeting drug artemisinin operates at a greater potency. Significantly, metformin prevents oxidation of heme in three protein scaffolds, cytochrome c, myoglobin and hemoglobin, with Kd values < 3 mM suggesting a dual oxidation and reduction role in the regulation of heme redox transition. Since heme- and porphyrin-like groups operate in diverse enzymes that control important metabolic processes, we suggest that metformin acts, at least in part, through stabilizing appropriate redox states in heme and other porphyrin-containing groups to control cellular metabolism

    Metformin Improves Diabetic Bone Health by Re-Balancing Catabolism and Nitrogen Disposal.

    No full text
    Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice.Metabolite levels were examined in bone marrow samples extracted from metformin or PBS -treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players.A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells.Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals

    Efficacy of Flavonoids on Animal Models of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis

    No full text
    Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrinopathies. Evidence suggest that flavonoids have beneficial effects on endocrine and metabolic diseases, including PCOS. However, high-quality clinical trials are lacking. We aimed to conduct a systematic review and meta-analysis of experimental studies to determine the flavonoids&rsquo; effects in animal models of PCOS. Three electronic databases including PubMed, Scopus, and Web of Science were systematically searched from their inception to March 2022. The Systematic Review Center for Laboratory Animal Experimentation&rsquo;s risk of bias tool was used to assess methodological quality. The standardized mean difference was calculated with 95% confidence intervals as the overall effects. R was used for all statistical analyses. This study was registered in PROSPERO (registration number: CRD42022328355). A total of eighteen studies, including 300 animals, met the inclusion criteria. Our analyses demonstrated that, compared to control groups, flavonoid groups showed a significantly lower count of atretic follicles and cystic follicles and the count of corpus luteum was higher. A significant reduction in the luteinizing hormone (LH), LH/follicle-stimulating hormone (FSH), and free testosterone were observed in intervention groups. Nevertheless, there was no significant difference in the effects of flavonoids on the level of FSH, estradiol, and progesterone. Subgroup analyses indicated that the type of flavonoid, dose, duration of administration, and PCOS induction drug were relevant factors that influenced the effects of intervention. Current evidence supports the positive properties of flavonoids on ovarian histomorphology and hormonal status in animal models of PCOS. These data call for more randomized controlled trials and further experimental studies investigating the mechanism in more depth

    Characteristic metabolic and microbial profiles in acute ischemic stroke patients with phlegm-heat pattern

    No full text
    Objective: To explore the characteristics of plasma metabolites, feces gut microbiota and the crosstalk between gut microbiota and host metabolism in patients with acute ischemic stroke and phlegm-heat pattern (AIS-PHP). Methods: The metabolic and microbiome profiles of 20 AIS-PHP patients and 20 healthy controls (HCs) were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics and 16s rDNA sequencing, respectively. The covariation between LC-MS/MS-based metabolite data and 16s rDNA sequence data was presented. Results: Distinct alterations in the plasma metabolic phenotype of AIS-PHP patients were found, in which 16 metabolites differed significantly between the AIS-PHP patients and the HCs. These metabolites represented 17 different metabolic pathways, including amino acid metabolism, lipid metabolism, and nucleotide metabolism. Additionally, significant alterations of gut microbiota composition and taxon were revealed at the phylum level between the AIS-PHP patients and the HCs. In AIS-PHP, Bacteroidetes, Firmicutes, and Proteobacteria dominated. Moreover, some microbes that differed between the 2 groups manifested a sole association with certain metabolites, such as the connection between Bacteroides and inosine and between Lachnospiraceae_unclassified and hypoxanthine. Conclusion: The present study preliminarily investigated the metabolomic and gut microbiome characteristics of AIS-PHP patient indicators. The link between metabolic and microbial dysbiosis in AIS-PHP sheds new light on the function of gut microbiota and associated metabolomics in the pathogenesis of the disease

    Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis

    No full text
    The mechanism underlying bone impairment in patients with diabetes mellitus, a metabolic disorder characterized by chronic hyperglycaemia and dysregulation in metabolism, is unclear. Here we show the difference in the metabolomics of bone marrow stromal cells (BMSCs) derived from hyperglycaemic (type 2 diabetes mellitus, [T2D]) and normal glycemic mice. 142 metabolites are substantially regulated in BMSC from T2D mice, with the TCA cycle being one of the primary metabolic pathways impaired by hyperglycaemia. Importantly, succinate, an intermediate metabolite in the TCA cycle, is increased by 24-fold in BMSC from T2D mice. Succinate functions as an extracellular ligand through binding to its specific receptor on osteoclastic lineage cells and stimulates osteoclastogenesis in vitro and in vivo. Strategies blocking the receptor activation inhibit osteoclastogenesis. This study reveals a metabolitemediated mechanism of osteoclastogenesis modulation that contributes to bone dysregulation in metabolic disorders
    • …
    corecore