43 research outputs found

    Auto-Encoder and Representation Learning Based MiRNA-Disease Association Prediction

    Get PDF
    As expressions of miRNAs are often associated with diseases, understanding the pathophysiology of illness at the miRNA level is beneficial for the treatment and prevention of associated diseases, as well as the creation of related medicines. Recent computational methods for predicting miRNA-disease associations integrate their pertinent heterogeneous data. The difficulty in this study is how to extract the implied associations from sparse data. In the present study, by drawing on natural language processing, a learning-based method is used to extract dense and high-dimensional representations of illnesses and miRNAs from integrated disease semantic similarity, miRNA functional similarity, and heterogeneous related interaction data. To predict disease-miRNA associations, we use a deep autoencoder and its reconstruction error as a measurement. Our experimental results suggest that our strategy is comparable to cutting-edge methods for predicting disease-related miRNAs

    Grenada’s Culture and Traditional Dress

    Get PDF
    Grenada is a Caribbean island that is located in the continent of South America.  Grenada, also known as the ‘Spice Isle’ has a population of 105,897. It is divided into seven parishes – St. George’s being the capital. The country's main cultural traditions were handed down by African ancestors, however other ethnic groups such as Indians and Europeans also made contributions. Due to the large presence of Africans, their traditions were the most influential and present-day traditional dress and cultural practices reflect their elements. Key Words: Grenada Culture, Carnival, Grenada’s Traditional Wea

    Quercetin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy by Inhibiting ERK/NF- κ

    Get PDF
    Background. Hepatic ischemia reperfusion (IR) injury is a common phenomenon in transplantation or trauma. The aim of the present study was to determine the protective effect of quercetin (QE) on hepatic IR injury via the ERK/NF-κB pathway. Methods. Mice were randomized into the sham, IR, QE100 + IR, and QE200 + IR groups. Quercetin was administered intragastrically daily at two doses (100 mg/kg and 200 mg/kg) for 5 days prior to IR injury. The expression levels of liver enzymes, inflammatory cytokines, and other marker proteins were determined at 2, 8, and 24 hours after IR. And they were compared among these groups. Results. Compared with the IR group, the treatment of QE reduced the release of cytokines, leading to inhibition of apoptosis and autophagy via downregulation of the ERK/NF-κB pathway in this model of hepatic IR injury. Conclusion. Apoptosis and autophagy caused by hepatic IR injury were inhibited by QE following a reduction in the release of inflammatory cytokines, and the relationship between the two may be associated with inactivation of the ERK/NF-κB pathway

    Charging Free Energy Calculations Using the Generalized Solvent Boundary Potential (GSBP) and Periodic Boundary Condition: A Comparative Analysis Using Ion Solvation and Oxidation Free Energy in Proteins

    No full text
    Free energy simulations using a finite sphere boundary condition rather than a periodic boundary condition (PBC) are attractive in the study of very large biomolecular systems. To understand the quantitative impact of various approximations in such simulations, we compare charging free energies in both solution and protein systems calculated in a linear response framework with the Generalized Solvent Boundary Potential (GSBP) and PBC simulations. For simple ions in solution, we find good agreements between GSBP and PBC charging free energies, once the relevant correction terms are taken into consideration. For PBC simulations with the particle-mesh-Ewald for long-range electrostatics, the contribution (Δ<i>G</i><sub>P–M</sub>) due to the use of a particle rather than molecule based summation scheme in real space is found to be significant, as pointed out by Hünenberger and co-workers. For GSBP, when the inner region is close to be charge neutral, the key correction is the overpolarization of water molecules at the inner/outer dielectric boundary; the magnitude of the correction (Δ<i>G</i><sub>s–pol</sub>), however, is relatively small. For charging (oxidation) free energy in proteins, the situation is more complex, although good agreement between GSBP and PBC can still be obtained when care is exercised. The smooth dielectric boundary approximation inherent to GSBP tends to make significant errors when the inner region is featured with a high net charge. However, the error can be corrected with Poisson–Boltzmann calculations using snapshots from GSBP simulations in a straightforward and robust manner. Because of the more complex charge and solvent distributions, the magnitudes of Δ<i>G</i><sub>P–M</sub> and Δ<i>G</i><sub>s–pol</sub> in protein simulations appear to be different from those derived for solution simulations, leading to uncertainty in directly comparing absolute charging free energies from PBC and GSBP simulations for protein systems. The relative charging/oxidation free energies, however, are robust. With the linear response approximation, for the specific protein system (CueR) studied, the effect of freezing the protein structure in the outer region is found to be small, unless a very small (8 Å) inner region is used; even in the latter case, the result is substantially improved when the nearby metal binding loop is allowed to respond to metal oxidation. The implications of these results to the applicability of GSBP to complex biomolecules and in ab initio QM/MM simulations are discussed

    The impact of intermediate product imports on industrial pollution emissions: Evidence from 30 industries in China.

    No full text
    Open and sustainable development is the theme that underpins a country's high-quality economic development. This study uses GMM regression, mediation effect test to conduct empirical tests based on the panel data of China's industrial sectors from 2003 to 2015 to analyze the internal mechanism of the impact of intermediate product imports on China's industrial pollution emissions. The results show that (1) Intermediate product imports can significantly promote the emission reduction of industrial wastes, including wastewater, waste gas and solid waste. (2) Considering the differences in the level of pollution intensity, this paper classified the sample and found the impact is heterogeneous that for the heavily, moderately, lightly polluted industries, intermediate product imports have different negative impacts on their pollution emissions. (3) Intermediate products imports reduce industrial pollution emissions through import competition effect, variety effect and technology spillover effect, and all of them play a partial mediating role

    Impact of Moisture Content on the Brittle-Ductile Transition and Microstructure of Sandstone under Dynamic Loading Conditions

    No full text
    Rockburst frequently occurred in an unstable or violent manner, which posed great safety risk and economic loss in deep underground engineering. The water injection into rock stratum was one of the most effectively ways to reduce rockburst by weakening rock mechanics. However, the moisture content was an important index related to rock mechanical properties. Many previous studies focused on the relationship between the moisture contents and macromechanical properties of rock materials under static load and seldom explored the impact of moisture variation on the mechanical properties and brittle-ductile transition characteristics of rock materials under dynamic loads. In this paper, we studied the dynamic mechanical properties of sandstone with different moisture contents under the same strain rate by the Split Hopkinson Pressure Bar (SHPB) experimental system. The relationship between dynamic mechanical properties of sandstone and moisture content was studied, and a dynamic ductility coefficient was proposed, which could be determined by the ratio between the peak strain and the yield strain. Then, it was used to assess the critical moisture content of the brittle-ductile transition of the sandstone. Through scanning electron microscopy (SEM) examination, the microstructure of sandstones with different moisture contents was inspected at magnifications of 500, 2000, and 5000 times, respectively. We showed that as the moisture content increased, the dynamic peak strength and elastic modulus decreased at different degrees, whereas the dynamic peak strain and ductility coefficient exhibited a nonlinear increase, respectively. When the moisture content reached 2.23%, the variation ratio of the dynamic ductility coefficient commenced to increase obviously, indicating that the sandstone began to transit from brittle behavior to ductile behavior. When the sample magnification was 500 times, the microstructure of the sandstone samples with zero and 2.01% to 2.40% moisture content mainly displayed the step pattern and river pattern, respectively, showing that the damage mode was brittle fracture. When the moisture content ranged from 2.49% to 2.58%, the microstructure of the sample included a large number of dimple clusters with local snake patterns and belonged to ductile fracture. When the sample magnification was 2000 and 5000 times, the microstructure was mainly brittle fracture with a moisture content lower than 2.23%. The microstructure of the sample with moisture content of 2.23% exhibited brittle-ductile composite fracture form, whereas others exhibited obviously ductile fracture. These characteristics were fundamentally consistent with the results reflected by the dynamic ductility coefficient. Our findings could provide a theoretical basis for mitigating coal and rock bursts by injecting water methods in underground coal mines
    corecore