18 research outputs found

    Hydrogel-based treatments for spinal cord injuries

    No full text
    Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI

    Zn2+ incorporated composite polysaccharide microspheres for sustained growth factor release and wound healing

    No full text
    The development of new wound dressings has always been an issue of great clinical importance and research promise. In this study, we designed a novel double cross-linked polysaccharide hydrogel microspheres based on alginate (ALG) and hyaluronic acid methacrylate (HAMA) from gas-assisted microfluidics for wound healing. The microspheres from gas-assisted microfluidics showed an uniform size and good microsphere morphology. Moreover, this composite polysaccharide hydrogel microspheres were constructed by harnessing the fact that zinc ions (Zn2+) can cross-link with ALG as well as histidine-tagged vascular endothelial growth (His-VEGF) to achieve long-term His-VEGF release, thus promoting angiogenesis and wound healing. Meanwhile, Zn2+, as an important trace element, can exert antibacterial and anti-inflammatory effects, reshaping the trauma microenvironment. In addition, photo cross-linked HAMA was introduced into the microspheres to further improve its mechanical properties and drug release ability. In summary, this novel Zn2+ composite polysaccharide hydrogel microspheres loaded with His-VEGF based on a dual cross-linked strategy exhibited synergistic antimicrobial and angiogenic effects in promoting wound healing

    Estimation of Actual Evapotranspiration Distribution in the Huaihe River Upstream Basin Based on the Generalized Complementary Principle

    No full text
    The accurate estimation of actual evapotranspiration can help improve the utilization of water resources and ease the ecological stress. Based on the generalized complementary principle proposed by Brutsaert in 2015, we used meteorological and hydrological data to estimate the actual evapotranspiration at a resolution of 1 km × 1 km between the years of 1961 and 2000 and also verified the model’s stability. In this study, we used the water balance equation to calibrate the parameters, coupled with the spatial simulation results of the meteorological elements in the actual evapotranspiration model. The estimation results of actual evapotranspiration show that the generalized complementary principle model had high estimation precision in this basin, with an average absolute error of 16.64 mm and an average relative error of 2.25%. With respect to spatial distribution, the average actual evapotranspiration over the years in the basin tended to have high and low distribution in the northern and southern parts of the basin, respectively. The actual evapotranspiration in the basin showed a decreasing trend over the period, with a rate of 24.1 mm/10 years. Correlation coefficient analysis showed that the percentage decreases in percentage sunshine and the decreases in the daily range of temperature were the main reasons for the decrease in actual evapotranspiration

    Transcriptome analysis provides insight into gamma irradiation delaying quality deterioration of postharvest Lentinula edodes during cold storage

    No full text
    To better determine how gamma irradiation (GI) improves abiotic stress resistance, a transcriptome analysis of postharvest L. edodes in response to 1.0 kGy GI was conducted, and further the underlying mechanism of GI in delaying quality deterioration over 20 d of cold storage was explored. The results suggested that GI was involved in multiple metabolic processes in irradiated postharvest L. edodes. In comparison with the control group, the GI group contained 430 differentially expressed genes, including 151 upregulated genes and 279 downregulated genes, which unveiled characteristic expression profiles and pathways. The genes involved in the pentose phosphate pathway were mainly upregulated and the expression level of the gene encoding deoxy-D-gluconate 3-dehydrogenase was 9.151-fold higher. In contrast, the genes related to other energy metabolism pathways were downregulated. Concurrently, GI inhibited the expression of genes associated with delta 9-fatty acid desaturase, ribosomes, and HSP20; thus, GI helped postpone the degradation of lipid components, suppress transcriptional metabolism and regulate the stress response. Additionally, the metabolic behavior of DNA repair induced by GI intensified by noticeable upregulation. These regulatory effects could play a potential and nonnegligible role in delaying the deterioration of L. edodes quality. The results provide new information on the regulatory mechanism of postharvest L. edodes when subjected to 1.0 kGy GI during cold storage

    Redistribution characteristics of atmospheric precipitation in different spatial levels of Guangzhou urban typical forests in southern China

    No full text
    The aims of the present study were to determine the pH variation and chemical feature of atmospheric precipitation during the research period. We also investigated the redistribution characteristics of rainfall while passing through the canopy layer, leaf-litter layer and soil layer, successively to quantify the acid rain buffering capacity of these spatial levels in the evergreen broadleaved forest (EBF), deciduous broadleaved forest (DBF) and coniferous forest (CF) in Guangzhou urban area, China. Results showed that the rainfall was typically acidic, and the acid rain type in Guangzhou urban area is converted from sulfuric acid type to mixed type of sulfuric acid and nitric acid. The major ions from the canopy to the forest floor differed within the three forest types. However, the enrichment phenomenon of base cations in soil leachate in EBF and DBF implied that nutrient loss was more serious in the broadleaved forest than in the coniferous forest. Variability of ionic concentration and pH in the vertical sequence of different tree species showed that the net ion concentration variation index has a significant conic relationship with ne pH change rate. We also built an acid rain buffering index, which combines the neutralization and interception effects of vegetation to acid rainfall. The present results indicated that the three forest types in urban Guangzhou all have certain buffering capacity to acid rain, and following the order: DBF > EBF > CF. In the meanwhile, the forest canopy is the biggest acid rain buffer in urban Guangzhou, following by the soil

    Humoral immune response to tumor-associated antigen Ubiquilin 1 (UBQLN1) and its tumor-promoting potential in lung cancer

    No full text
    Abstract Background This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). Methods Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. Results Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. Conclusions Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs

    Retrospect driving forces and forecasting reduction potentials of energy-related industrial carbon emissions from China's manufacturing at city level

    No full text
    International audienceLack of either spatial or temporal coverage in city-level carbon emissions analysis might curb our understanding of historical drivers and make future forecasting uncertain. To fill these gaps, we analyzed time-series energy-related industrial carbon emissions (EICEs) from manufacturing in over 99 cities nationwide in China during the period 2000-2015. We estimated these cities' EICEs reduction potential up until 2030 by improving scenario design, which imposed constraints separately on different city groups based on historical drivers. Results indicated distinct changes of EICEs around 2013 for the heavy manufacturing [HM], light manufacturing [LM] and high-tech development [HD] city groups and of emissions intensity for the energy production [EP] city group. The slowing economic growth would partly explain these transformations since 2013. Energy efficiency and industrial structure contributed most to these switches for the EP and HD city groups, respectively, while energy mix and energy efficiency were also major contributors for the HM and LM city groups. Given economic growth at a normal speed, EICEs will increase by 59%, 78%, 90% and 95% for the EP, HM, LM and HD city groups, respectively, from 2015-2030. Our scenarios show that energy efficiency improvement and industrial structure optimization will spur the EICEs to peak before 2030 and limit future EICEs increase by 6.4% and 33.4% in 2030 for the EP and HD city groups, respectively. This implies that energy efficiency improvement and industrial structure optimization are key emissions mitigation factors for the EP and HD cities. Equally important, our study found more unclean fuel structure with higher coal share in the HM and LM city groups than in the other groups. It is therefore imperative to improve their energy efficiency and optimize energy and industrial structures in the HM and LM cities. Results highlight the need to impose different constraints in scenario design and provide mitigation strategies at city level
    corecore