39 research outputs found

    The effect of temperature on gas relations in MA packages for capsicums (Capsicum annuum L., cv. Tasty): an integrated approach

    Get PDF
    Abstract A range of gas conditions was generated by packing individual capsicums (green 'Tasty' bell peppers, Capsicum annuum L.) in packages with different areas of permeable low-density polyethylene film (0.0006 -0.48 m 2 ) at four different temperatures (0, 12, 20 and 30°C). Steady-state O 2 and CO 2 partial pressures in the package were used to calculate rates of O 2 uptake and CO 2 production. The results were analysed applying a mechanistic model approach. The applied film resulted in temperature stable gas conditions inside the packages, as the temperature dependence of the permeability of the film was close to the temperature dependence of capsicum respiration. Capsicums showed a slight degree of fermentation in packages with a small film area

    The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content

    Full text link
    Background Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. Results The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in ‘Granny Smith’ and ‘Royal Gala’ apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. Conclusion The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars. Electronic supplementary material The online version of this article (doi:10.1186/s12870-015-0573-7) contains supplementary material, which is available to authorized users

    A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants

    Get PDF
    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models

    Isoprene Increases Thermotolerance of Fosmidomycin-Fed Leaves

    No full text
    Isoprene is synthesized and emitted in large amounts by a number of plant species, especially oak (Quercus sp.) and aspen (Populus sp.) trees. It has been suggested that isoprene improves thermotolerance by helping photosynthesis cope with high temperature. However, the evidence for the thermotolerance hypothesis is indirect and one of three methods used to support this hypothesis has recently been called into question. More direct evidence required new methods of controlling endogenous isoprene. An inhibitor of the deoxyxylulose 5-phosphate pathway, the alternative pathway to the mevalonic acid pathway and the pathway by which isoprene is made, is now available. Fosmidomycin eliminates isoprene emission without affecting photosynthesis for several hours after feeding to detached leaves. Photosynthesis of fosmidomycin-fed leaves recovered less following a 2-min high-temperature treatment at 46°C than did photosynthesis of leaves fed water or fosmidomycin-fed leaves in air supplemented with isoprene. Photosynthesis of Phaseolus vulgaris leaves, which do not make isoprene, exhibited increased thermotolerance when isoprene was supplied in the airstream flowing over the leaf. Other short-chain alkenes also improved thermotolerance, whereas alkanes reduced thermotolerance. It is concluded that thermotolerance of photosynthesis is a substantial benefit to plants that make isoprene and that this benefit explains why plants make isoprene. The effect may be a general hydrocarbon effect and related to the double bonds in the isoprene molecule

    An Overview of Regulation Topologies in Resonant Wireless Power Transfer Systems for Consumer Electronics or Bio-Implants

    No full text
    Owing to its relatively high efficiency, extended transmission range, and less exposure to radio frequency radiation, near-field resonant wireless power transfer (R-WPT) has been widely used in consumer electronics and bio-implants. For most applications, a well-regulated output voltage is required against the coupling and loading variations, and thus a regulation scheme should be employed in an R-WPT system. To achieve an optimal receiver (RX) or overall efficiency, together with a reduced cost overhead, several regulation schemes have been proposed in recent years, where the regulation can be implemented at either the RX or transmitter (TX) side, or both. These regulation schemes have been reviewed and comprehensively discussed in this paper. Hence, the main contribution of this paper is to provide a guideline for designing the regulation scheme in R-WPT systems. Moreover, potential new topologies of regulation are investigated here
    corecore