12 research outputs found

    A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota

    Get PDF
    With the irrational use of antibiotics and the increasing abuse of oral antibiotics, the drug resistance of gastrointestinal pathogens has become a prominent problem in clinical practice. Gut microbiota plays an important role in maintaining human health, and the change of microbiota also affects the activity of pathogenic bacteria. Interfering with antibiotic resistant bacteria by affecting gut microbiota has also become an important regulatory signal. In clinical application, due to the unique advantages of traditional Chinese medicine in sterilization and drug resistance, it is possible for traditional Chinese medicine to improve the gut microbial microenvironment. This review discusses the strategies of traditional Chinese medicine for the treatment of drug-resistant bacterial infections by changing the gut microenvironment, unlocking the interaction between microbiota and drug resistance of pathogenic bacteria

    Metabolic perturbation of Streptomyces albulus by introducing NADP-dependent glyceraldehyde 3-phosphate dehydrogenase

    Get PDF
    The available resources of Streptomyces represent a valuable repository of bioactive natural products that warrant exploration. Streptomyces albulus is primarily utilized in the industrial synthesis of ε-poly-L-lysine (ε-PL). In this study, the NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans was heterologously expressed in S. albulus CICC11022, leading to elevated intracellular NADPH levels and reduced NADH and ATP concentrations. The resulting perturbation of S. albulus metabolism was comprehensively analyzed using transcriptomic and metabolomic methodologies. A decrease in production of ε-PL was observed. The expression of gapN significantly impacted on 23 gene clusters responsible for the biosynthesis of secondary metabolites. A comprehensive analysis revealed a total of 21 metabolites exhibiting elevated levels both intracellularly and extracellularly in the gapN expressing strain compared to those in the control strain. These findings underscore the potential of S. albulus to generate diverse bioactive natural products, thus offering valuable insights for the utilization of known Streptomyces resources through genetic manipulation

    A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes

    No full text
    Based on the three-dimensional (3D) cube packing model, a simple expression for the tortuosity of gas transport paths in solid oxide fuel cells’ (SOFC) porous electrodes is developed. The proposed tortuosity expression reveals the dependence of the tortuosity on porosity, which is capable of providing results that are very consistent with the experimental data in the practical porosity range of SOFC. Furthermore, for the high porosity (>0.6), the proposed tortuosity expression is also accurate. This might be helpful for understanding the physical mechanism for the tortuosity of gas transport paths in electrodes and the optimization electrode microstructure for reducing the concentration polarization

    Rhodium‐Catalyzed Cascade Reactions of Indoles with 4‐Hydroxy‐2‐Alkynoates for the Synthesis of Indole‐Fused Polyheterocycles

    No full text
    Herein, an efficient and regioselective Rh(III)-catalyzed [4+2] annulation/lactonization cascade of indoles with 4-hydroxy-2-alkynoates at room temperature to access the furo[3′,4′:4,5]pyrimido[1,6-a]indole-1,5(3H,4H)-diones is described. This method features mild reaction conditions, operational simplicity, excellent regioselectivity, broad substrate scope with good functional group tolerance, and good to excellent yields

    QTL Mapping for Phosphorus Efficiency and Morphological Traits at Seedling and Maturity Stages in Wheat

    No full text
    Phosphorus (P) efficiency (PE), which comprises phosphorus uptake (PupE) and utilization efficiency (PutE), is considered as one of the most important factors for crop yield. In the present study, 11 seedling traits and 13 maturity traits related to wheat PE and morphology were investigated using a set of recombinant inbred lines (RILs) derived from the cross of “TN 18 × LM 6,” under hydroponic culture trials and field trials at low P (LP) and normal P (NP) levels in two different years, respectively. The LP input reduced of biomass, yield and PupE traits, but increased PutE traits. A total of 163 QTLs for seedling and maturity traits under different P levels and their AV, and 15 QTLs for relative traits were detected on 21 chromosomes. Of these, 49 and 63 QTLs for were detected specially in LP and NP treatments, respectively. We found 11 relatively high-frequency QTLs (RHF-QTLs) and four important QTL clusters, which may be the potential targets for marker-assisted selection (MAS) in wheat breeding programs for PE. Favorable relationships for breeding programs were found in the four important QTL clusters, which allow the possibility of improving the morphological traits and PutE simultaneously. A total of 29 markers which associated with 51 QTLs were found highly homologous with EST sequences, which suggested that they were potential functional loci. We suggested that the four biomass traits (SDW, RDW, TDW, and RSDW), five yield traits (SN, PH, TGW, GWP, and StWP) and two relative traits (Rstwp and Rgwp) can be considered as the primary indexes for the evaluation of PE for they are easy to identify on a large-scale

    Data_Sheet_1_Metabolic perturbation of Streptomyces albulus by introducing NADP-dependent glyceraldehyde 3-phosphate dehydrogenase.pdf

    No full text
    The available resources of Streptomyces represent a valuable repository of bioactive natural products that warrant exploration. Streptomyces albulus is primarily utilized in the industrial synthesis of ε-poly-L-lysine (ε-PL). In this study, the NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans was heterologously expressed in S. albulus CICC11022, leading to elevated intracellular NADPH levels and reduced NADH and ATP concentrations. The resulting perturbation of S. albulus metabolism was comprehensively analyzed using transcriptomic and metabolomic methodologies. A decrease in production of ε-PL was observed. The expression of gapN significantly impacted on 23 gene clusters responsible for the biosynthesis of secondary metabolites. A comprehensive analysis revealed a total of 21 metabolites exhibiting elevated levels both intracellularly and extracellularly in the gapN expressing strain compared to those in the control strain. These findings underscore the potential of S. albulus to generate diverse bioactive natural products, thus offering valuable insights for the utilization of known Streptomyces resources through genetic manipulation.</p

    Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains

    No full text
    Abstract The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization

    Effects of sintilimab plus chemotherapy as first-line treatment on health-related quality of life in patients with advanced esophageal squamous cell carcinoma: results from the randomized phase 3 ORIENT-15 studyResearch in context

    No full text
    Summary: Background: In ORIENT-15 study, sintilimab plus chemotherapy demonstrated significant improvement on overall survival (OS) versus placebo plus chemotherapy in first-line treatment of advanced esophageal squamous cell carcinoma (ESCC). Here, we report effect of sintilimab plus chemotherapy on health-related quality of life (HRQoL) in patients with advanced ESCC. Methods: From December 14, 2018 to August 28, 2022, HRQoL was evaluated in all randomized patients using European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core 30 items (QLQ-C30), EORTC Quality of Life Questionnaire Oesophageal Cancer Module 18 items (QLQ-OES18), and visual analogue scale (VAS) of the EuroQol five-dimensional five-level questionnaire (EQ-5D-5L). Mean scores of each scale were described by treatment group through week 60. Least-squares mean (LSM) score change from baseline through week 24 were analyzed using the mixed-model repeated-measures method. Time to the first onset of deterioration (TTD) and OS for each scale were estimated. Clinical Trials Registration: NCT03748134. Findings: As of August 28, 2022, 689 of 690 enrolled patients were assessed for HRQoL analysis (sintilimab group: 340, placebo group: 349). Median follow-up was 32.2 months. Differences in LSM favored sintilimab over placebo for QLQ-C30 social functioning (LSM difference: 3.06, 95% CI: 0.55 to 5.57; P = 0.0170), pain (−2.24, 95% CI: −4.30 to −0.17; P = 0.0337), fatigue (−2.24, 95% CI: −4.46 to −0.02; P = 0.0479), constipation (−3.27, 95% CI −5.49 to −1.05; P = 0.0039), QLQ-OES18 pain (−1.77, 95% CI −3.11 to −0.43; P = 0.0097), trouble swallowing saliva (−2.09, 95% CI: −3.77 to −0.42; P = 0.0146), and choked when swallowing (−3.23, 95% CI: −5.60 to −0.86; P = 0.0076). TTD favored sintilimab over placebo for QLQ-OES18 dysphagia (Hazard ratio [HR]: 0.76, 95% CI: 0.61–0.94, P = 0.0104), and trouble swallowing saliva (HR: 0.48, 95% CI: 0.35–0.67, P < 0.0001). Improved OS were observed in patients with better performance in several functioning and symptom scales of QLQ-C30 and QLQ-QES18. Interpretation: The statistically significant differences of several HRQoL scales and improvements in delayed deterioration observed in our study further support the use of sintilimab plus chemotherapy as first-line treatment for advanced ESCC. Funding: This study was funded by Innovent Biologics and was co-funded by Eli Lilly
    corecore