8 research outputs found

    Serum proteomic profiling and haptoglobin polymorphisms in patients with GVHD after allogeneic hematopoietic cell transplantation

    Get PDF
    We studied serum proteomic profiling in patients with graft versus host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) by two-dimensional gel electrophoresis (2-DE) and mass spectrometry analysis. The expression of a group of proteins, haptoglobin (Hp), alpha-1-antitrypsin, apolipoprotein A-IV, serum paraoxonase and Zn-alpha-glycoprotein were increased and the proteins, clusterin precursor, alpha-2-macroglobulin, serum amyloid protein precursor, sex hormone-binding globulin, serotransferrin and complement C4 were decreased in patients with extensive chronic GVHD (cGVHD). Serum haptoglobin (Hp) levels in patients with cGVHD were demonstrated to be statistically higher than in patients without cGVHD and normal controls (p < 0.01). We used immunoblotting and PCR in combination with 2-DE gel image analysis to determine Hp polymorphisms in 25 allo-HCT patients and 16 normal donors. The results demonstrate that patients with cGVHD had a higher incidence of HP 2-2 phenotype (43.8%), in comparison to the patients without cGVHD (0%) and normal donors (18.7%), suggesting the possibility that specific Hp polymorphism may play a role in the development of cGVHD after allo-HCT. In this study, quantitative serum Hp levels were shown to be related to cGVHD development. Further, the data suggest the possibility that specific Hp polymorphisms may be associated with cGVHD development and warrant further investigation

    Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Get PDF
    We have described a severe combined immunodeficiency (SCID) mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL) and 66 acute myeloid leukemia (AML)) in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8%) displayed an aggressive growth pattern, 14 (10.5%) displayed an indolent growth pattern and 74 (55.6%) did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course

    Genetic diversity of Toll-like receptor 5 among pig populations

    No full text
    The Toll-like receptor 5 (TLR5) recognizes flagellin of Gram-positive and -negative bacteria and plays an important role in the host defense system. Here, we surveyed single nucleotide polymorphisms (SNPs) in the coding sequence of the porcine TLR5 gene in 83 individuals from five pig breeds, these including Chinese local populations and Western commercial pig breeds. A total of 19 medium polymorphic SNPs (0.25 < PIC < 0.5) were identified, three of which were missense mutations that clustered within the extracellular domain of TLR5. One of the non-synonymous SNPs fell within a 228-amino acid region which has been shown to be important for flagellin recognition. Four SNPs were only found with high frequencies in Oriental pig breeds. The 19 SNPs were found in 30 haplotypes, one of which segregated at high frequency in all samples. Compared with Western pig breeds, Chinese local populations had higher genetic diversity and more haplotypes. Tajima's test showed no evidence for deviation from neutrality. The data provide useful information for future genetic marker characterization by means of disease association analysis and/or stimulating the mutation carrier with relevant ligands

    Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries

    No full text
    International audienceThe development of covalent organic frameworks (COFs) with new building units is of critical importance for enriching the structural diversity and expanding their functions. However, the construction of COFs has been thus far limited primarily to traditional organic linkers. Herein, we report three-dimensional porous crystalline covalent polyoxometalate-organic frameworks (CPOFs) constructed from both inorganic and organic building blocks with reversible covalent bonds. These highly crystalline CPOFs exhibited 3-fold interpenetrated diamondoid topology, permanent porosity and high stability. Furthermore, these CPOFs could be directly applied as anode materials for lithium-ion batteries (LIBs) and displayed high reversible capacity (as high as 550 mA h g-1), rate performance, and cycling stability (up to 500 cycles)

    Gating Effects for Ion Transport in Three-Dimensional Functionalized Covalent Organic Frameworks

    No full text
    International audienceThe development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions. The obtained materials exhibit an outstanding selective ion transmission performance with a high gating ratio (up to 23.6 for JUC-590), which is among the highest values in metal ion-activated solid-state nanochannels reported so far. Furthermore, JUC-590 offers high tunability, selectivity, and recyclability of ion transport proved by the experimental and simulated studies

    Tell me your IP address, and I will tell who you are. Issues of diagnosis of Internet addiction: illness, disorder, or fiction?

    No full text
    corecore