33 research outputs found

    Identification of mutations in porcine STAT5A that contributes to the transcription of CISH

    Get PDF
    Identification of causative genes or genetic variants associated with phenotype traits benefits the genetic improvement of animals. CISH plays a role in immunity and growth, however, the upstream transcriptional factors of porcine CISH and the genetic variations in these factors remain unclear. In this study, we firstly identified the minimal core promoter of porcine CISH and confirmed the existence of STATx binding sites. Overexpression and RT-qPCR demonstrated STAT5A increased CISH transcriptional activity (P < 0.01) and mRNA expression (P < 0.01), while GATA1 inhibited CISH transcriptional activity (P < 0.01) and the following mRNA expression (P < 0.05 or P < 0.01). Then, the putative functional genetic variations of porcine STAT5A were screened and a PCR-SSCP was established for genotype g.508A>C and g.566C>T. Population genetic analysis showed the A allele frequency of g.508A>C and C allele frequency of g.566C>T was 0.61 and 0.94 in Min pigs, respectively, while these two alleles were fixed in the Landrace population. Statistical analysis showed that Min piglets with CC genotype at g.566C>T or Hap1: AC had higher 28-day body weight, 35-day body weight, and ADG than TC or Hap3: CT animals (P < 0.05, P < 0.05). Further luciferase activity assay demonstrated that the activity of g.508A>C in the C allele was lower than the A allele (P < 0.05). Collectively, the present study demonstrated that STAT5A positively regulated porcine CISH transcription, and SNP g.566C>T in the STAT5A was associated with the Min piglet growth trait

    A Journey into the City. Migrant Workers' Relation with the Urban Space and Struggle for Existence in Xu Zechen's Early Jingpiao Fiction

    Get PDF
    In contemporary China, rural-urban migrants constitute a new urban subject with entirely new identity-related issues. This study aims at demonstrating how literature can be a valid field in investigating such evolving subjectivities, through an analysis of Xu Zechen’s early novellas depicting migrants’ vicissitudes in Beijing. Combining a close reading of the texts and a review of the main social problems characterising rural-urban migration in China, this paper focuses on the representation of the identity crisis within the migrant self in Xu’s stories, taking into account the network of meanings employed by the writer to signify the objective and subjective tension between the city and the countryside

    Pore Structure of Coals by Mercury Intrusion, N<sub>2</sub> Adsorption and NMR: A Comparative Study

    No full text
    Coalbed methane (CBM) mainly adsorb in massive pores of coal. The accurate characterization of pores benefits CBM resource evaluation, exploration and exploitation. In this paper, mercury intrusion porosimetry (MIP) and low temperature nitrogen adsorption (N2GA) combined with low field nuclear magnetic resonance (NMR) experiments were conducted to analyze the advantages and differences among different experimental techniques in pore characterization. The results show that the total porosity has a tendency to decrease first and then rise with the increase of coal rank, which is mainly caused by the compaction in early stage and the thermogenic gas produced in middle and late stages of coalification. The comparison between different techniques shows that NMR is superior to the conventional methods in terms of porosity and pore size distribution, which should be favorable for pore characterization. The N2GA pore size measurement, based on BJH model, is only accurate within 10‒100 nm in diameter. There is a peak misalignment between the NMR and MIP results in the pore size comparison. The reason for this phenomenon is that there is a centrifugal error in NMR experiment, which could cause a differential damage to the coal sample, resulting in partial loss of the nuclear magnetic signal

    miR-200c Accelerates Hepatic Stellate Cell-Induced Liver Fibrosis via Targeting the FOG2/PI3K Pathway

    No full text
    Background. Although expression of miR-200s is aberrant in liver fibrosis, its role in liver fibrogenesis still remains unknown. Here, we investigated the role of miR-200c in the activation of human hepatic stellate cells (HSCs) and induction of liver fibrosis. Methods. We engineered human HSCs (LX2 cell line) to stably express miR-200c (LX2-200c) or empty vector control (LX2-nc). Results. miR-200c expression upregulated α-smooth muscle actin (SMA) and vimentin, enhanced HSCs growth and migration, increased expression of collagen type I (a main component of ECM) gene and secretion of epidermal growth factor (EGF), and upregulated the phosphorylation of Akt, a downstream effector of the PI3K pathway. As a target of miR-200s and inhibitor of PI3K pathway, FOG2 protein expression was significantly suppressed in LX2-200c cells. Moreover, LY294002, a highly selective inhibitor of PI3K, blocked phosphorylation of Akt and the effects of miR-200c. Conclusions. These data suggest that miR-200c activates HSCs in liver fibrosis possibly by downregulating FOG2 protein expression and upregulating PI3K/Akt signaling. Autocrine activation of EGF signaling may also be a mechanism of miR-200c-mediated HSCs activation. So miR-200c can be a potential marker for HSCs activation and liver fibrosis progression, as well as a potential target to attenuate liver fibrosis

    Integrated Metabolomic and Transcriptomic Analyses Reveals Sugar Transport and Starch Accumulation in Two Specific Germplasms of <i>Manihot esculenta</i> Crantz

    No full text
    As a starchy and edible tropical plant, cassava (Manihot esculenta Crantz) has been widely used as an industrial raw material and a dietary source. However, the metabolomic and genetic differences in specific germplasms of cassava storage root were unclear. In this study, two specific germplasms, M. esculenta Crantz cv. sugar cassava GPMS0991L and M. esculenta Crantz cv. pink cassava BRA117315, were used as research materials. Results showed that sugar cassava GPMS0991L was rich in glucose and fructose, whereas pink cassava BRA117315 was rich in starch and sucrose. Metabolomic and transcriptomic analysis indicated that sucrose and starch metabolism had significantly changing metabolites enrichment and the highest degree of differential expression genes, respectively. Sugar transport in storage roots may contribute to the activities of sugar, which will eventually be exported to transporters (SWEETs), such as (MeSWEET1a, MeSWEET2b, MeSWEET4, MeSWEET5, MeSWEET10b, and MeSWEET17c), which transport hexose to plant cells. The expression level of genes involved in starch biosynthesis and metabolism were altered, which may result in starch accumulation. These results provide a theoretical basis for sugar transport and starch accumulation and may be useful in improving the quality of tuberous crops and increasing yield

    Rs4074134 near BDNF gene is associated with type 2 diabetes mellitus in Chinese Han population independently of body mass index.

    Get PDF
    Obesity and family history are the most important predictors for type 2 diabetes mellitus(T2DM) in the Chinese Han population. However, it is not known whether the genetic loci related to obesity are associated with the risk of developing T2DM in this population. The present case-control study evaluated the associations between five genetic loci for obesity and the pathogenesis of T2DM. The study included 1117 Chinese Han patients with T2DM, 1629 patients with pre-diabetes (impaired fasting glucose and impaired glucose tolerance, IFG/IGT) and 1113 control subjects residing in Beijing. Five genetic loci including rs2815752 near NEGR1, rs10938397 near GNPDA2, rs4074134 near BDNF, rs17782313 near MC4R and rs1084753 near KCTD15 were genotyped. The results showed an association between rs4074134-BDNF minor allele and T2DM irrespective of age, gender and body mass index (BMI) (OR = 0.87; 95%CI: 0.77-0.99, P = 0.04). This SNP was also associated with pre-diabetes (OR = 0.87; 95%CI: 0.77-0.97, P = 0.01) independently of age, gender and BMI. No associations were found between diabetes or pre-diabetes and any of the other SNP loci studied. Genotype-phenotype association analysis (adjusting for age and gender) showed rs4074134-BDNF to be associated with BMI, waist circumference, fasting and postprandial plasma glucose, fasting serum insulin, and HOMA-IR in subjects without T2DM. However, fasting and postprandial plasma glucose were the only significant factors after adjusting for BMI. These results suggest that the common variation of BDNF (rs4074134) is associated with T2DM independently of obesity in Chinese Han population. This variant also has an effect on plasma glucose concentration, BMI and insulin sensitivity

    CO<sub>2</sub> Adsorption on N‑Doped Porous Biocarbon Synthesized from Biomass Corncobs in Simulated Flue Gas

    No full text
    This study was to develop a low-cost N-doped porous biocarbon adsorbent that can directly adsorb CO2 in high-temperature flue gas from fossil fuel combustion. The porous biocarbon was prepared by nitrogen doping and nitrogen–oxygen codoping through K2CO3 activation. Results showed that these samples exhibited a high specific surface area of 1209–2307 m2/g with a pore volume of 0.492–0.868 cm3/g and a nitrogen content of 0.41–3.3 wt %. The optimized sample CNNK-1 exhibited a high adsorption capacity of 1.30 and 0.27 mmol/g in the simulated flue gas (14.4 vol % CO2 + 85.6 vol % N2) and a high CO2/N2 selectivity of 80 and 20 at 25 and 100 °C and 1 bar, respectively. Studies revealed that too many microporous pores could hinder CO2 diffusion and adsorption due to the decrease of CO2 partial pressure and thermodynamic driving force in the simulated flue gas. The CO2 adsorption of the samples was mainly chemical adsorption at 100 °C, which depended on the surface nitrogen functional groups. Nitrogen functional groups (pyridinic-N and primary and secondary amines) reacted chemically with CO2 to produce graphitic-N, pyrrolic-like structures, and carboxyl functional groups (−N–COOH). Nitrogen and oxygen codoping increased the amount of nitrogen doping content in the sample, but acidic oxygen functional groups (carboxyl groups, lactones, and phenols) were introduced, which weakened the acid–base interactions between the sample and CO2 molecules. It was demonstrated that SO2 and water vapor had inhibition effects on CO2 adsorption, while NO nearly has no effect on the complex flue gas. Cyclic regenerative adsorption showed that CNNK-1 possessed excellent regeneration and stabilization ability in complex flue gases, indicating that corncob-derived biocarbon had excellent CO2 adsorption in high-temperature flue gas
    corecore