112 research outputs found

    Needleless eletrospinning of polystyrene fibers with an oriented surface line texture

    Get PDF
    We have demonstrated that polystyrene (PS) nanofibers having an ordered surface line texture can be produced on a large scale from a PS solution of acetone and N,N&prime;-dimethylformamide (2/1, vol/vol) by a needleless electrospinning technique using a disc as fiber generator. The formation of the unusual surface feature was investigated and attributed to the voids formed on the surface of jets due to the fast evaporation of acetone at the early stage of electrospinning, and subsequent elongation and solidification turning the voids into ordered lines on fiber surface. In comparison with the nanofibers electrospun by a conventional needle electrospinning using the same solution, the disc electrospun fibers were finer with similar diameter distribution. The fiber production rate for the disc electrospinning was 62 times higher than that of the conventional electrospinning. Fourier transform infrared spectroscopy and X-ray diffraction measurements indicated that the PS nanofibers produced from the two electrospinning techniques showed no significant difference in chemical component, albeit slightly higher crystallinity in the disc spun nanofibers.<br /

    Cloning and expression of pineapple sucrosephosphate synthase gene during fruit development

    Get PDF
    A 1132-base pairs (bp) polymerase-chain-reaction product of sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from pineapple (Ananas comosus cv. Comte de paris) fruit was cloned and nominated as Ac- SPS1. The sequence encodes a putative 377 amino acids protein containing two serine conserved features that had been found in other plant SPS genes: the presence of a 14-3-3 protein special binding domain and an activated site of osmosis stress, which can been activated by phosphorylation and dephosphorylation. The Neighbour-joining tree revealed that Ac-SPS1 belonged to the first kind of sucrose phosphate synthase gene. The results indicated that, the Ac-SPS1 expression was low in the earlier period of fruit growth, then, increasing from 20 days after anthesis and gradually a falling on 40 days, reached the peak with the highest value around 70 days. The SPS activity and sucrose content reached their maximum 80 days after anthesis. It proved that the  accumulation of sucrose was correlated with SPS activity and mRNA content and it maximally occurred at 10 d after SPS mRNA and activity had reached its maxima. These results indicated that Ac-SPS1 gene played a key role in sucrose accumulation during the pineapple fruit development and transcriptional activation with increase in Ac- SPS1 expression might be important regulatory events of sugar during pineapple fruit maturation.Key words: Pineapple fruit, sucrose phosphate synthase, gene cloning, expression

    Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth

    Full text link
    Nanofibres having a parallel line surface texture were electrospun from cellulose acetate butyrate solutions using a solvent mixture of acetone and N,N\u27-dimethylacetamide. The formation mechanism of the unusual surface feature was explored and attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. The fast evaporation of a highly volatile solvent, acetone, from the polymer solution was found to play a key role in the formation of surface voids, while the high viscosity of the residual solution after the solvent evaporation ensured the line surface to be maintained after the solidification. Based on this principle, nanofibres having a similar surface texture were also electrospun successfully from other polymers, such as cellulose acetate, polyvinylidene fluoride, poly(methyl methacrylate), polystyrene and poly(vinylidene fluoride-co-hexafluoropropene), either from the same or from different solvent systems. Polarized Fourier transform infrared spectroscopy was used to measure the polymer molecular orientation within nanofibres. Schwann cells were grown on both aligned and randomly oriented nanofibre mats. The parallel line surface texture assisted in the growth of Schwann cells especially at the early stage of cell culture regardless of the fibre orientation. In contrast, the molecular orientation within nanofibres showed little impact on the cell growth.<br /

    Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration

    Get PDF
    Electrospun nanofibers emulate extracellular matrix (ECM) morphology and architecture; however, small pore size and tightly-packed fibers impede their translation in tissue engineering. Here we exploited in situ gas foaming to afford three-dimensional (3D) poly(L-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) scaffolds, which exhibited nanotopographic cues and a multilayered structure. The addition of SF improved the hydro philicity and biocompatibility of 3D PLCL scaffolds. Three-dimensional scaffolds exhibited larger pore size (38.75 ± 9.78 μm2 ) and high porosity (87.1% ± 1.5%) than that of their 2D counterparts. 3D scaffolds also improved the deposition of ECM components and neo-vessel regeneration as well as exhibited more numbers of CD163+/ CCR7+ cells after 2 weeks implantation in a subcutaneous model. Collectively, 3D PLCL/SF scaffolds have broad implications for regenerative medicine and tissue engineering applications.info:eu-repo/semantics/publishedVersio

    Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs

    Get PDF
    Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications

    Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification

    Get PDF
    Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation
    corecore